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Abstract

This paper studies the income fluctuation problem without imposing bounds on utility,

assets, income or consumption. We prove that the Coleman operator is a contraction

mapping over the natural class of candidate consumption policies when endowed with

a metric that evaluates consumption differences in terms of marginal utility. We show

that this metric is complete, and that the fixed point of the operator coincides with

the unique optimal policy. As a consequence, even in this unbounded setting, policy

function iteration always converges to the optimal policy at a geometric rate.
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1. Introduction

The income fluctuation problem refers to a classic decision problem that lies at the heart

of modern macroeconomic theory. In the problem, agents choose a state-contingent

path for savings and consumption in order to maximize expected lifetime utility, taking

as given the rate of return on assets, an exogenous stream of non-capital income, and,
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in many cases, a borrowing constraint. The model has been used to analyze household

behavior in many fundamental economic and financial applications. The literature is

too large to enumerate, but some broadly representative examples include Schechtman

and Escudero (1977), Deaton (1991), Huggett (1993), Aiyagari (1994), Krusell and Smith

(1998), Deaton and Laroque (1992, 1996) and Angeletos (2007).

Early work on consumption behavior focused on highly simplified problems with

closed-form solutions. It turned out that these models have only limited ability to

fit consumption data (see, e.g., Carroll, 2001). Adding more realistic features has led

to better models, but in these settings computation cannot be avoided. The computa-

tional problem remains a nontrivial one because in most modeling exercises the con-

sumer problem is embedded in a larger equilibrium or estimation problem, and needs

to be solved quickly, accurately and reliably for many different parameter values.

A variety of solution techniques have been proposed for the income fluctuation prob-

lem specifically or for optimization problems that subsume the income fluctuation

problem. The literature now contains many numerical studies presenting simulation

results for particular solution methods according to particular criteria in particular ap-

plications and at particular sets of parameter values. While such studies can certainly

complement theoretical analysis, they cannot substitute for it, and there remains a lack

of clear analytical results proving convergence at given rates for a given method over

a continuum of standard applications, parameter values and initial conditions.

In this paper, we provide analytical results on convergence for the common solution

method known as policy function iteration (or, in some circles, time iteration). The
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basic ideas behind policy function iteration were illuminated by Coleman (1990). As is

well-known, when the utility function is bounded, policy iteration is globally conver-

gent. The reason is that the operator that implements policy iteration—the Coleman

operator—is essentially conjugate to the Bellman operator (Coleman, 1990). When re-

wards are bounded, global geometric stability of the Bellman operator is guaranteed by

classical dynamic programming theory. By applying this conjugacy between the two

operators, one can then show that the Coleman operator has all of the same properties.

Rendahl (2006) makes use of these ideas to provide a detailed treatment of policy iter-

ation in the bounded reward case, working with an abstract optimization problem that

permits occasionally binding constraints.

For standard income fluctuation models, however, utility is unbounded, and consump-

tion can become either arbitrarily small or arbitrarily large. In these settings, the Bell-

man operator is not a contraction mapping in the usual metric, and we cannot claim

that iterates of the Bellman operator converge uniformly to the value function. In fact

the uniform deviation is typically infinite, regardless of how many iterations are per-

formed. Thus the standard dynamic programming theory does not apply.

In response to these issues, the present paper develops an alternative approach to the

income flucuation optimization problem that delivers sharper results than previously

obtained—even when rewards are bounded. Our focus is directly on the Coleman op-

erator, rather than drawing connections to the Bellman operator. Because we work

with the Coleman operator and policy function iteration, our main results are formu-

lated in policy function space rather than value function space, and unbounded re-
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wards cause no difficulties for the analysis.

As our most significant theoretical result, we show that a version of the Coleman op-

erator adapted to the income fluctuation problem is in fact a contraction mapping in

a complete metric space of candidate consumption policies, even when rewards are

unbounded. We also prove that the asset-consumption path associated with the fixed

point of Coleman’s operator satisfies the sequential Euler equation and transversality

conditions, and that the Euler equation and transversality conditions are sufficient for

optimality. Putting these facts together, we show that a unique optimal consumption

policy exists, and that, for any well-behaved initial condition, policy function iteration

converges to this optimal policy at a geometric rate. In particular, we prove that the

pointwise deviation between the n-th iterate and the optimal policy converges to zero

at a geometric rate, and the same is true for the uniform deviation over any bounded

set. (As will be discussed later, this is in a sense the best possible result for policy

function iteration in the unbounded setting.) Moreover, we give a computable upper

bound on the deviation in terms of observable quantities.

All of these results are obtained in a setting that can accommodate a broad range of

standard applications. In particular, no specific structure is imposed on utility beyond

differentiability, concavity and the usual slope conditions. Utility can be unbounded

both above and below. In addition, non-capital income and the asset space are allowed

to be unbounded. The income process is permitted to be nonstationary, as is required
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in certain applications.1

In terms of connections to the existing literature, perhaps the most closely related

results are those found in a recent paper on heterogeneous agent incomplete mar-

ket economies by Kuhn (2013). Like us, Kuhn permits unbounded rewards and un-

bounded asset and shock spaces. As one component of his investigation into decen-

tralized equilibria, he studies the same consumer problem considered in this paper.

By applying an order-theoretic approach to the analysis of the Coleman operator, he

establishes existence of a fixed point, which corresponds to an optimal consumption

policy, and provides some convergence results for policy function iteration. On one

hand, the present paper is much narrower than Kuhn’s paper, in the sense that we con-

cern ourselves only with the consumer’s problem. On the other hand, our results on

the consumer problem’s are considerably sharper. We obtain not only the existence of

a fixed point but also uniqueness, as well as geometric rates of convergence of policy

function iteration.

Regarding earlier literature, the Coleman operator was originally introduced as a con-

structive iterative method for solving stochastic optimal growth models (Coleman,

1990). It has often been used to establish existence of equilibrium in economies with

distortions, notably by Coleman (1991), Greenwood and Huffman (1995), Datta et al.

1Predictions of this class of problems can be highly sensitive to the persistence and stationarity of

the shock process—hence the need to include the possibility of nonstationary income dynamics. Recent

papers addressing this point include Kaplan and Violante (2010), Blundell, Pistaferri and Preston (2008),

Gourio (2008), Moll (2012) and Kuhn (2013).
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(2002), Morand and Reffett (2003), Datta et al. (2005) and Mirman et al. (2008). In these

papers, fixed points of the Coleman operator were analyzed using a variety of methods

related to order preserving structures, continuity, compactness and concavity. The last

four papers derive fixed point results in very general settings, but always with either

bounded utility, compact state spaces or both.

There are other approaches to the optimization problem treated in this paper besides

analysis of the Coleman operator, even in the unbounded setting. One such alternative

is value function iteration paired with weighted supremum norms rather that stan-

dard supremum norms. While the weighted supremum norm strategy is well suited

to convergence analysis, it is also very challenging when utility can be unbounded

both above and below. Some success in this direction has been obtained by Carroll

(2004), who considers a related buffer stock savings problem. He develops an inge-

nious weighted supremum norm approach to optimization via the Bellman operator.

However, his results are more specialized, as they are tied to a particular class of utility

functions. Moreover, the value function iteration approach tends to give weaker re-

sults in terms of convergence of policy functions. For example, Santos (2000) provides

a way to establish bounds on policy function deviation from value function deviation.

Those bounds do not apply here, but even if they did they would give worse conver-

gence rates than those obtained below. The reason is that moving from value function

results to policy function results involves a loss. Indeed, when the uniform deviation

between the approximate and true value functions is O(γn) for some γ < 1, the rate

obtained by Santos (2000, theorem 3.3) for policies is only O(γn/2).
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As a final remark on the computational literature, we also note the work of Moreira

and Maldonado (2003), which also relates to the contractiveness of policy iteration.

This work is interesting and merits further investigation but it is not closely related to

our research as it analyzes only local convergence in a neighborhood of a “stationary

point” of the policy function, and requires interiority. As for our optimality results,

relatively similar findings were obtained by Rabault (2002) using a less standard opti-

mality criterion. Some of our underlying optimality results could also potentially be

obtained by modifying the arguments found in Deaton (1991), Deaton and Laroque

(1992, 1996), Chambers and Bailey (1996), Kamihigashi (2005) or Le Van and Vailakis

(2012).

The paper proceeds as follows. Section 2 describes the model. Initial optimality results

are given in section 3. Section 4 contains our main results on policy function iteration.

Numerical issues are discussed in section 5. Section 6 concludes. All proofs can be

found in section 7.

2. Set Up

We consider a standard optimal savings problem, also known as an income fluctuation

problem. In the problem, an agent chooses a consumption plan {ct}t≥0 to maximize

E
∞

∑
t=0

βtu(ct)

subject to the constraints

ct + at+1 ≤ Rat + yt, ct ≥ 0, at ≥ −b, t = 0, 1, . . . (1)
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Here β ∈ (0, 1) is the discount factor, at is asset holdings at time t, ct is consumption,

R := 1 + r where r is the interest rate, b is an exogenous borrowing constraint, and yt

is non-capital income.

Assumption 2.1. R > 1, βR < 1 and b = 0.

Assumption 2.2. The utility function u : (0, ∞) → R is continuously differentiable,

strictly increasing and strictly concave, with limc→0 u′(c) = ∞ and limc→∞ u′(c) = 0.

Assumption 2.3. The income process {yt} takes the form yt = y(zt), where y : Rd →

(0, ∞) is continuous and increasing, and {zt} is a vector-valued Markov process on Rd

with Feller and increasing Markov kernel Π.2

Assumption 2.4. M(z) := ∑∞
t=0 R−t E[yt | z0 = z] is finite for all z ∈ Rd.

Assumption 2.5. The supremum of E[u′(yt+1) | zt = z] over z ∈ Rd is finite.

Regarding assumption 2.1, we assume that b = 0 because it simplifies the exposition

and costs no generality. To see that this is so, observe that, if b > 0, then, since ct +

at+1 ≤ Rat + yt is equivalent to ct + at+1 + b ≤ R(at + b) − rb + yt, we can rewrite

the constraints as ât ≥ 0 and ct + ât+1 ≤ Rât + ŷt where ât := at + b and ŷt := yt −

rb. However, for implementations with b > 0, care must be taken to reinterpret the

assumptions placed on yt as assumptions on ŷt.

2In particular,
∫

h(z′)Π(z, dz′) is continuous in z whenever h : Rd → R is bounded and continuous,

and increasing in z whenever h is bounded and increasing.
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Assumption 2.4 is a growth restriction on non-capital income that generalizes the com-

mon assumption of a bounded income process (in which case finiteness of M(z) is

trivial). It also holds if {yt} is either mean-reverting or nonstationary but does not

grow too fast. Assumption 2.5 states that expected marginal utility of next period con-

sumption for an agent without assets is still finite. An assumption along these lines

cannot be avoided in the current setting, where income is stochastic and can be arbi-

trarily small (otherwise finiteness of the expectation in the Euler equation cannot be

guaranteed).

A variety of income processes satisfy our assumptions, including models with transi-

tory and permanent components and shocks with heavy tails. For example, suppose

that income is the sum of permanent and transitory components ξt and ηt, where {ξt}

follows a martingale and {ηt} is uncorrelated. In particular, suppose that ξt+1 = ξtut+1

where {ut} is IID and lognormal with unit mean, and that {ηt} is IID with E[u′(ηt)] <

∞. This can be placed in our framework by setting zt = (ξt, ηt) and yt = y(zt) = ξt + ηt.

All of the preceding assumptions are satisfied. Assumption 2.4 holds because perma-

nent income is a martingale, and hence E[yt | z0 = z] is constant. Assumption 2.5 holds

because yt+1 ≥ ηt+1, implying

E[u′(yt+1) | zt = z] ≤ E[u′(ηt+1)] < ∞.

For the remainder of the paper, assumptions 2.1–2.5 are all assumed to hold.
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3. Optimality

The asset space is R+ := [0, ∞) and the state space is S := R+ ×Rd. Let Ft be the

σ-algebra generated by {z1, . . . , zt}. A feasible consumption path from (a, z) ∈ S is a

consumption sequence {ct} such that ct is Ft measurable for all t, the constraints in (1)

are satisfied, and (a0, z0) = (a, z). The value function V : S→ R is defined by

V(a, z) := sup E

{
∞

∑
t=0

βtu(ct)

}
((a, z) ∈ S) (2)

where the supremum is over all feasible consumption paths from (a, z). Assump-

tions 2.1–2.5 imply that V(a, z) < ∞ for any initial conditions in (a, z) ∈ S, as shown

in the appendix. An optimal consumption path from (a, z) is a feasible consumption path

from (a, z) that attains the supremum in (2). Given strict concavity of u, if an optimal

consumption path from (a, z) exists then it must be unique.3

As is well-known, the bound ct ≤ Rat + yt can be binding in this model (cf., e.g.,

Deaton, 1991), and, as a result, the intertemporal first order condition is u′(ct) ≥

βR Et[u′(ct+1)] with equality when ct < Rat + yt. Since u′(ct) ≥ u′(Rat + yt) always

holds, this restriction can also be expressed by the single equality

u′(ct) = max
{

βR Et[u′(ct+1)], u′(Rat + yt)
}

, (3)

where the expectation Et conditions on Ft. Condition (3) is the (sequential) Euler

3Given our assumptions, the function {ct} 7→ E ∑∞
t=0 βtu(ct) is strictly concave over the set of feasible

consumption paths from (a, z), and the latter is convex.
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equation for our problem. The transversality condition is

lim
t→∞

βt E [u′(ct)at+1] = 0. (4)

It is generally recognized that for concave problems such as this one, the Euler equa-

tion and the transversality condition are sufficient for optimality. We could not locate

such a result in the existing literature that covers the present case, where shocks are

Markovian and constraints are occasionally binding.4 Hence, for completeness, we

prove the following theorem.

Theorem 3.1. Let (a, z) ∈ S and let {ct} be a feasible consumption path from (a, z). If {ct}

and the corresponding asset path {at} satisfy the Euler equation (3) and the transversality

condition (4), then {ct} is the unique optimal path from (a, z).

The proof can be found in section 7. In the next section we turn to our main results,

which pertain to identification, characterization and computation of optimal paths.

4. Existence and Computation

In what follows, ‖ · ‖ always represents the supremum norm, “increasing” is synony-

mous with “nondecreasing” and “decreasing” is synonymous with “nonincreasing”.

A derivative or partial derivative of a function of a ∈ R+ evaluated at the lower limit

a = 0 is just a right-hand derivative. All proofs are deferred to section 7.

4The closest result of which we are aware is theorem 1.2 of Schechtman and Escudero (1977), which

treats the income fluctuation problem with bounded IID shocks. Note however that the concept of

optimality used in that paper is the “overtaking” criterion.
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4.1. Coleman’s Operator

The Euler equation (3) can be expressed in terms of policy functions as

u′(c(a, z)) = max
{

βR
∫

u′{c[Ra + y(z)− c(a, z), ẑ]}Π(z, dẑ), ϕ(a, z)
}

, (5)

where

ϕ(a, z) := u′(Ra + y(z)), ((a, z) ∈ S).

Here c(a, z) is understood to be consumption at state (a, z) ∈ S. Equation (5) is a

functional equation in c. In order to identify a solution, let C be the set of continuous

increasing functions c : S → R such that 0 < c(a, z) ≤ Ra + y(z) for all (a, z) ∈ S and

‖u′ ◦ c − ϕ‖ < ∞. The set C identifies a set of candidate consumption functions. In

order to compare two policies, we pair C with the distance

ρ(c, d) := ‖ u′ ◦ c− u′ ◦ d ‖ (c, d ∈ C )

that evaluates their maximal difference in terms of marginal utility. Note that ρ is finite

on C , since ‖u′ ◦ c− u′ ◦ d‖ ≤ ‖u′ ◦ c− ϕ‖+ ‖u′ ◦ d− ϕ‖, and the last two terms are

finite by our definition of C .

We let K denote Coleman’s policy function operator (Coleman, 1990), slightly modified

to incorporate occasionally binding constraints. For given c ∈ C , the value Kc(a, z) is

the unique value t such that 0 < t ≤ Ra + y(z) and

u′(t) = max
{

βR
∫

u′{c[Ra + y(z)− t, ẑ]}Π(z, dẑ), ϕ(a, z)
}

. (6)

It is immediate from the definition of K that any fixed point of K in C solves the func-

tional Euler equation (5), and, conversely, any solution to (5) is a fixed point of K.
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Proposition 4.1. The following statements are true:

1. The pair (C , ρ) is a complete metric space.

2. The operator K is a well-defined mapping from C into itself.

3. On (C , ρ), the operator K is a contraction of modulus βR.

Proposition 4.1 and Banach’s contraction mapping theorem imply that there exists a

unique fixed point of K in C , and that this fixed point can be obtained by iteration of K

on any initial c ∈ C . These results are summarized in corollary 4.1.

Corollary 4.1. There exists a unique solution c∗ to the functional equation (5) in C , and,

moreover, ρ(Knc, c∗) = O((βR)n) for any c ∈ C .

Since c∗ ∈ C , we see that c∗ is continuous and increasing in both arguments. Regarding

dynamics, fix initial condition (a, z) ∈ S. The consumption path from (a, z) generated

by c∗ is the path {ct} defined recursively by (a0, z0) = (a, z), ct = c∗(at, zt) and at+1 =

Rat + y(zt)− ct. We can now state our main optimality result.

Theorem 4.1. For any (a, z) ∈ S, the consumption path from (a, z) generated by c∗ is optimal.

Together, theorem 4.1 and corollary 4.1 indicate that by iterating with K on arbitrary

c ∈ C , we can compute a policy cn such that the deviation from the optimal policy

c∗ as measured by the distance ρ is arbitrarily small—modulo approximation and nu-

merical error. Since ρ(cn, c∗) = ‖u′ ◦ cn − u′ ◦ c∗‖, this translates to uniformly accurate

approximation of marginal utility of consumption at the optimum. Accurate computa-

tion of marginal utility of consumption can be of interest in and of itself—for example,
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when computing stochastic discount factors. However, there will be situations where

the primary interest is in accurate computation of c∗. In this connection, note that in

general we cannot hope to obtain the global uniform convergence

sup
s∈S

|cn(s)− c∗(s)| → 0

as n → ∞. The reason is that S is unbounded, and, in general, so are cn and c∗. As

a result, the supremum is infinite. Thus, the most we can aim to prove is uniform

convergence on compacts, or, more generally, uniform convergence on bounded sets.

The next result shows that this convergence does hold, at least when zt is bounded

below. Moreover, it gives us an error bound on the uniform deviation in terms of

observable quantities.

To state the result, suppose that assumption 2.5 is strengthened as follows:

Assumption 4.1. There exists a vector Z ∈ Rd such that zt ≥ Z with probability one.

Let F ⊂ S, let r1 := inf(a,z)∈F u′(Ra + y(z)), let r2 := u′(y(Z)), let m denote the inverse

of u′, and let

L(R, y, u, F) := max
r1≤r≤r2

1
−u′′(m(r))

. (7)

Under assumptions 2.1–2.4 and 4.1 we have the following result:

Theorem 4.2. If u is twice continuously differentiable and F is bounded, then L := L(R, y, u, F)

is a finite positive constant, and, for any c ∈ C ,

sup
s∈F
|Knc(s)− c∗(s)| ≤ LβR

1− βR
ρ(Knc, Kn−1c). (8)
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Note that all of the quantities on the right-hand size of (8) are observable when gen-

erating the sequence {Knc} by iterating on c with K. In view of proposition 4.1, the

right-hand size converges to zero at rate O((βR)n). An immediate corollary is that if S

itself is bounded, then Knc converges uniformly to c∗ at rate O((βR)n) for all c ∈ C .

5. A Numerical Example

The question of how consumption varies with income has preoccupied economists for

many years. While the life-cycle version of the income fluctuation model has been

widely studied (see, e.g., Kaplan and Violante (2010)), less is known for the infinite

horizon setting with general income processes.5 One contribution of our results is to

facilitate calculation of consumption behaviour in the infinite horizon income fluctua-

tion model by guaranteeing geometric convergence of policy function iteration from a

wide set of initial conditions, and for potentially unbounded and nonstationary income

processes. In what follows we implement policy function iteration for a variety of in-

come scenarios, including those where income is nonstationary. Through this exercise,

we highlight features of consumption behavior that appear to arise from nonstationar-

ity of the income processes.

5Carroll (2009) and Heathecote, Storesletten and Violante (2007) provide characterizations for specific

settings. See Jappelli and Pistaferri (2010) for a survey of results.
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5.1. Implementation

Suppose that income follows the process

yt = ξtεt + ηt,

ln ξt = ρ ln ξt−1 + ln ut,

where εt is a multiplicative transitory shock and ut is a shock to the persistent com-

ponent of income; and that ξ0 is drawn from a log normal distribution LN(0, σ2
0 ). The

sequences {εt} and {ut} are IID, with εt ∼ LN(0, σ2
ε ) and ut ∼ LN(0, σ2

u). As in Kaplan

and Violante (2010), we take σε = 0.05, σu = 0.01, σ0 = 0.15. The additive compo-

nent ηt can be interpreted as social security, gifts, etc. We assume that {ηt} is IID and

LN(µη, σ2
η), with ση = 0.001. We take u(c) = c1−θ/(1− θ) with θ = 2, and set β = 0.95

and R = 1.02. For the remaining parameters we consider the following three scenarios:

1. Baseline: µη = −5, b = 0 and ρ ∈ {0.5, 0.95, 1}.

2. Tighter borrowing limit: µη = −5, b = −10 and ρ ∈ {0.95, 1}.

3. Higher expected minimum level of income: µη = 0, b = 0 and ρ ∈ {0.95, 1}.

Scenario 1 is used to illustrate how the policy function changes with the persistence of

income shocks when the borrowing constraint is relatively loose.6 Scenario 2 illustrates

how the policy changes when the borrowing limit is tight. We can think of b = −10

6In Aiyagari (1994), the natural debt limit is min y/r, where min y > 0. At this limit the consumer

is never borrowing constrained. Here, since yt is not bounded away from zero, we approximate the

natural debt limit by setting E[ηt] ≈ 0 and taking b = 0.
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as precommited consumption such as child support. We focus on ρ = 0.95 and ρ = 1

because these are the more empirically relevant cases. Scenario 3 illustrates how the

policy functions change with the persistence of income shocks when consumers expect

a higher minimum level of income (e.g., increased social security benefits).

In all cases we combine piecewise linear interpolation to approximate policies with

iteration of the Coleman operator. Expectations in the Euler equation are evaluated

via Monte Carlo with 1,000 draws. When ρ = 1 there is no reasonable upper bound

on the state, and hence in our computations we set the policy function outside of the

grid to its value at the closest grid point. We also simplify the state space by using net

worth wt := at(1 + r) + yt and ξt as the state variables. The grid points (wn, ξn) lie in

[−bR + 10−4, 100]× [10−4, 25], with 100 points for the w grid and 50 for the ξ grid. The

grid is scaled to be more dense when w and ξ are small.7

In addition to the policy functions, we also report the insurability measure of εt and ut.

The insurability measure of a shock to income is a statistic commonly used to capture

the fraction of the shock that does not translate into changes in consumption. For shock

xt it is defined as

ϕx
t := 1− cov(∆ ln ct, ln xt)

var(ln xt)
.

7Varying the number of draws used for integration, the grid range and grid density gives essentially

the same results. A more detailed description plus code for running the simulations can be found at

https://github.com/jstac/policy iteration.
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When the permanent income hypothesis holds, the measure is close to zero for per-

manent shocks and close to one for transitory shocks. We calculate ϕx
t by simulating a

panel of 10,000 household and tracking them for 2,000 periods, computing ϕx
t for each

t. All households start with a0 = 0 and ξ0 ∼ LN(0, σ2
0 ).

5.2. Results

Figure 1 corresponds to the baseline exercise, displaying the consumption policy, sav-

ings policy and insurability measure for different degrees of income persistence. Note

that the change in consumption and savings policies from ρ = 0.95 to ρ = 1 is much

larger than from ρ = 0.5 to ρ = 0.95. First, consumption level is much higher when

ρ = 1. Second, when ρ = 1, the borrowing constraint binds on a much larger region.

In particular, it binds even in the low net worth and high ξ region. Since temporary

income shocks average out, this region is where the consumer has low asset and high

income relative to asset. When ρ = 1, the consumer sees the high income as permanent

and consumes. When ρ = 0.95, even though the income process is highly persistent,

the consumer still sees the high income as temporary and saves for the future.

Another way of looking at this is through the insurability measure for ut. A much

larger fraction of ut translates into consumption changes when ρ = 1 than when ρ =

0.95. (When ρ = 0.5, consumption responds to ut as if it is a transitory shock.) In all

cases, almost all of the transitory shock εt is self-insured.

In the second scenario, we investigate whether the results described above hold when

there is a tighter borrowing limit, in the form of precommited consumption. Figure 2
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Figure 1: Baseline exercise, with b = 0 and µη = −5.
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shows that the policy functions for both values of ρ appear as shifts on net worth state

space. For example, the consumption level at w in the first scenario is approximately

equal to consumption at w + 10 in the second scenario, holding ξ fixed. This is because

precommited spending is is essentially a sunk cost. The only way it affects decisions is

that the consumer receives interest income rb = 0.2 in each period, which is not large

enough relative to income to induce major changes in consumption behaviour.

In scenario three we look at the effect on the results in scenario one caused by an in-

crease in µη. Figure 3 shows that when Eη increases from 0.006 to 1, the region where

the borrowing constraint binds expands somewhat, but the change is not strikingly

large. This suggests that the additive shock ηt is not the cause of the difference in the

policy functions in scenario one. While the policy functions do not change much from

scenario one, the insurability measure is noisier for ut and lower for εt. The difference

in the insurability measure between ρ = 1 and ρ = 0.95 also disappears. This is per-

haps because ηt is an additive shock that acts like a noise term. When µη increases, a

larger fraction of total income becomes transitory so that even when the persistence of

ξt increases, the persistence of total income does not increase as much.

6. Conclusion

This paper studies the income fluctuation problem with unbounded utility, assets, in-

come and consumption. We show that the Coleman operator is a contraction mapping

over a set candidate consumption policies when endowed with a metric measuring

marginal utility, and that this metric is complete. We prove that its fixed point is the
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Figure 2: Tighter borrowing limit, with b = −10 and µη = −5.

21



Figure 3: Higher minimum income, with b = 0 and µη = 0.
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unique optimal policy, and that, even though rewards and marginal utility are un-

bounded, policy function iteration always converges to the optimal policy at a geomet-

ric rate. In addition, we obtain computable error bounds on the supremum deviation

between the current iterate and the optimal policy c∗. Some numerical examples are

presented.

In the context of the income fluctuation problem, it may be possible to vary our as-

sumptions while obtaining the same conclusions, or to develop tighter bounds using

structure available in particular applications. It might also be possible to connect our

results to numerical techniques involving endogenous grids, or to apply our methods

to other dynamic programming problems. For example, the Coleman operator may

turn out to be a contraction mapping for other programming problems characterized

by Euler equations once the right metric is obtained. Furthermore, one can potentially

embed the current model with permanent shocks in a perpetual youth framework and

solve for a stationary competitive equilibrium. These ideas are left for future research.

7. Appendix

7.1. Proofs from section 3

We begin with an auxiliary finiteness result, which shows that the consumer problem

is always well defined. Given our assumptions on u, there exists an L < ∞ with

u(c) ≤ c + L. Using this L, we have the following:
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Lemma 7.1. For any initial conditions (a0, z0) ∈ S and feasible path {ct} we have

E

{
∞

∑
t=0

βtu(ct)

}
≤ Ra0 + M(z0)

1− βR
+

L
1− β

.

Proof of lemma 7.1. Recall that L is a constant satisfying u(c) ≤ c + L, and hence

E
∞

∑
t=0

βtu(ct) ≤ E
∞

∑
t=0

βtct +
L

1− β
. (9)

Regarding assets, it is elementary to show that

at ≤ Rta0 + Rt
t−1

∑
j=0

R−j−1yj, t = 1, 2, . . . (10)

Since ct ≤ Rat + yt, we then have ct ≤ Rt+1a0 + Rt ∑t
j=0 R−jyj. Combining this bound

with (9) and using the definition of M(z0) gives the desired inequality.

Proof of theorem 3.1. As discussed in section 2, at most one optimal path exists in this

model, so we need only prove that the path in question is maximal. To this end, fix

(a, z) ∈ S and let {ct} be a feasible consumption path from (a, z) such that {ct} and

the corresponding asset path {at} satisfy the Euler equation (3) and the transversality

condition (4). Let {ĉt} be another feasible consumption path from (a, z) with corre-

sponding asset path {ât}. Let

QT :=
T

∑
t=0

βtE{u(ĉt)− u(ct)}.
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It suffices to prove that limT→∞ QT ≤ 0. To this end, observe that, by concavity of u,

QT =
T

∑
t=0

βtE{u(Rât + yt − ât+1)− u(Rat + yt − at+1)}

≤
T

∑
t=0

βtE{Ru′(Rat + yt − at+1)(ât − at)− u′(Rat + yt − at+1)(ât+1 − at+1)}

=
T

∑
t=0

βtE{Ru′(ct)(ât − at)− u′(ct)(ât+1 − at+1)}.

By simple rearrangement, and using the fact that â0 = a0 and hence Ru′(c0)(â0− a0) =

0, we can write this bound as

QT ≤ −
T−1

∑
t=0

βtE{[u′(ct)− βRu′(ct+1)](ât+1 − at+1)} − βTEu′(cT)(âT+1 − aT+1).

Suppose for the moment that

E{[u′(ct)− βRu′(ct+1)](ât+1 − at+1)} ≥ 0, ∀ t ≥ 0. (11)

In this case we have

QT ≤ −βTEu′(cT)(âT+1 − aT+1) ≤ βTEu′(cT)aT+1 → 0,

where the second inequality is by âT+1 ≥ 0 and the final convergence is by transver-

sality. Hence it remains only to show that (11) holds. Using the law of iterated expec-

tations and the fact that, by feasibility, the random variables ct, at+1 and ât+1 are all

Ft-measurable, we can write the inequality in (11) as

E{[u′(ct)− βREtu′(ct+1)](ât+1 − at+1)} ≥ 0. (12)

By subtracting βREtu′(ct+1) from both sides of the Euler equation (3), we can write the

expression inside the outer expectation as

Yt := [u′(Rat + yt)− βREtu′(ct+1)]+(ât+1 − at+1),
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where [x]+ := 0 ∨ x. We claim that Yt ≥ 0 almost surely. By writing Yt as Yt1{ct =

Rat + yt}+Yt1{ct < Rat + yt}we can consider the cases ct = Rat + yt and ct < Rat + yt

in turn. First suppose that ct = Rat + yt. In this case we have at+1 = 0, and hence

ât+1 − at+1 ≥ 0. It follows that Yt ≥ 0. Next suppose that ct < Rat + yt. Then

βREtu′(ct+1) = u′(ct) > u′(Rat + yt), from which it is immediate that Yt = 0. Thus, in

either case we have Yt ≥ 0, and hence (12) is valid. The proof is now complete.

7.2. Proofs from section 4: Preliminaries

We now turn to some ideas that will be used as stepping stones to proving our main

results. They concern evolution of the pricing functionals, and extend results found

in Deaton (1991), Deaton and Laroque (1992) and Chambers and Bailey (1996) to a

more general setting. In the discussion, we repeatedly use the following simple fact:

If h1 ≤ h2 are decreasing functions on R with (necessarily unique) fixed points x1 and

x2, then x1 ≤ x2. We let P be the set of continuous decreasing functions p from S

to R such that p ≥ ϕ and ‖p − ϕ‖ < ∞, where ϕ is as defined immediately below

(5). Heuristically, P is the set of pricing funtionals corresponding to the consumption

policies in C . Consider the pricing functional equation

p(a, z) = max
{

βR
∫

p[Ra + y(z)− (u′)−1(p(a, z)), ẑ]Π(z, dẑ), ϕ(a, z)
}

, (13)

which is a functional equation in p. Let T be the operator from P to P defined as

follows: For p ∈ P , the function Tp is defined such that Tp(a, z) is the unique r ≥

ϕ(a, z) solving

r = max
{

βR
∫

p[Ra + y(z)− (u′)−1(r), ẑ] Π(z, dẑ), ϕ(a, z)
}

. (14)
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We now state four lemmas and then give their proofs: Lemmas 7.2 and 7.3 show that

Tp is well-defined for p ∈P , and, moreover, that p ∈P implies Tp ∈P . Lemmas 7.4

and 7.5 give useful properties of T. Lemma 7.5 is similar to theorem 2 of Chambers and

Bailey (1996), who studied the operator T in the context of commodity pricing models.

Lemma 7.2. Given p ∈P and (a, z) ∈ S, there exists a unique r ≥ ϕ(a, z) that solves (14).

Lemma 7.3. T maps P into itself.

Lemma 7.4. T is order preserving on P when P is endowed with the usual pointwise order.

Lemma 7.5. The set P endowed with the metric d(p, q) = ‖p− q‖ is a complete metric space,

and T is a contraction on (P , d) of modulus βR.

Proof of lemma 7.2. Fix p ∈P and (a, z) ∈ S. Let hp(r) :=: hp(r; a, z) be the function on

[ϕ(a, z), ∞) defined by

hp(r) := max
{

βR
∫

p[Ra + y(z)− (u′)−1(r), ẑ]Π(z, dẑ), ϕ(a, z)
}

. (15)

The function hp is decreasing, and sends [ϕ(a, z), ∞) into itself. Of these claims, the

only nonobvious one is that hp(r) is always finite. It suffices to check that hp(r) is finite

at r = ϕ(a, z), which in turn reduces to the claim that
∫

p(0, ẑ)Π(z, ẑ) < ∞. To see this,

recall that ‖p− ϕ‖ is finite, and hence there exists a K < ∞ with p ≤ ϕ + K. This leads

to the bound

hp(r) ≤
∫

ϕ(0, ẑ)Π(z, ẑ) + ϕ(0, z) + K =
∫

u′[y(ẑ)]Π(z, ẑ) + u′[y(z)] + K. (16)

Finiteness of the right-hand side is guaranteed by assumptions 2.3 and 2.5.
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In addition, a simple application of the dominated convergence theorem shows that hp

is continuous. Clearly hp(ϕ(a, z)) ≥ ϕ(a, z), and hp(r) converges to a finite constant

as r → ∞. Existence of a fixed point in [ϕ(a, z), ∞) now follows from the intermediate

value theorem. Since hp is decreasing, the fixed point is unique.

Proof of lemma 7.3. Fix p ∈ P . Let hp(r; a, z) be as in (15). To see that Tp is contin-

uous, recall that, by the proof of lemma 7.2, r 7→ hp(r; a, z) takes values in a closed

interval I(a, z) := [ϕ(a, z), Φ(a, z)], where Φ(a, z) is the right-hand side of (16). Since

the correspondence (a, z) 7→ I(a, z) is nonempty, compact-valued and continuous, and

since

gr I 3 (a, z, r) 7→ hp(r; a, z) ∈ I(a, z)

is continuous, the fixed point of r 7→ hp(r; a, z) is also continuous in (a, z).8 In other

words, Tp is continuous on S.

To show that Tp is decreasing on S, let (a1, z1) and (a2, z2) be points in S with (a1, z1) ≤

(a2, z2). Let hi(r) := hp(r; ai, zi) for i = 1, 2. Let ri be the fixed point of hi. Given their

definition, to show that r2 ≤ r1, it suffices to show that h2 ≤ h1 pointwise. To see the

latter, pick any r and observe that

h2(r) = max
{

βR
∫

p[Ra2 + y(z2)− (u′)−1(r), ẑ] Π(z2, dẑ), ϕ(a2, z2)

}
≤ max

{
βR

∫
p[Ra1 + y(z1)− (u′)−1(r), ẑ] Π(z2, dẑ), ϕ(a2, z2)

}
.

8See, for example, theorem B.1.4 in Stachurski (2009).
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Since p is decreasing and Π is an increasing kernel, it follows that
∫

p(x, ẑ)Π(z2, dẑ) ≤∫
p(x, ẑ)Π(z1, dẑ) for all x ∈ R+, and therefore

h2(r) ≤ max
{

βR
∫

p[Ra1 + y(z1)− (u′)−1(r), ẑ] Π(z1, dẑ), ϕ(a1, (z1)

}
= h1(r).

In conclusion, we have h2 ≤ h1, and hence r2 ≤ r1. That is, Tp(a2, z2) ≤ Tp(a1, z1), and

Tp is decreasing as claimed.

To complete our proof of the claim that Tp ∈ P whenever p ∈ P , it remains to show

that p ∈ P implies ‖Tp − ϕ‖ < ∞. To see this, pick any (a, z) ∈ S. Since Tp ≥ ϕ

(lemma 7.2),

|Tp(a, z)− ϕ(a, z)| = Tp(a, z)− ϕ(a, z)

≤ βR
∫

p[Ra + y(z)− (u′)−1(p(a, z)), ẑ]Π(z, dẑ).

≤
∫

p(0, ẑ)Π(z, dẑ).

Since p ∈P we have ‖p− ϕ‖ < ∞, and hence there is a finite K with

|Tp(a, z)− ϕ(a, z)| ≤
∫

ϕ(0, ẑ)Π(z, dẑ) + K =
∫

u′[y(ẑ)]Π(z, dẑ) + K.

The right-hand side is bounded by assumption 2.5. Hence ‖Tp− ϕ‖ < ∞.

Proof of lemma 7.4. Pick any p1, p2 ∈P with p1 ≤ p2. We claim that Tp1 ≤ Tp2. To see

this, fix any (a, z) ∈ S. Let hi = hpi , so that, in particular,

hi(r) := max
{

βR
∫

pi[Ra + y(z)− (u′)−1(r), ẑ] Π(z, dẑ), ϕ(a, z)
}

for i = 1, 2. By definition, Tpi(a, z) is the fixed point of hi, and h1 ≤ h2 clearly holds.

Hence Tp1(a, z) ≤ Tp2(a, z), and, more generally, Tp1 ≤ Tp2 on S.
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Proof of lemma 7.5. Regarding completeness of (P , d), let P0 be all p : S→ R such that

d(p, ϕ) = ‖p − ϕ‖ < ∞, and let bS be all bounded functions from S to R. Let τ be

an operator on P0 defined by τ(p) = p− ϕ. Evidently τ(p) is bounded. In fact it is

straightforward to show that τ is a bijection from P0 to bS. Moreover, for any p, q ∈P0

we have

d(p, q) = ‖p− q‖ = ‖p− ϕ− (q− ϕ)‖ = ‖τ(p)− τ(q)‖.

Hence τ is an isometric isomorphism between (P0, d) and (bS, d). Since the latter is

complete, so is the former. Finally, P is a closed subset of (P0, d), and hence also

complete.

Contractivity of T will be shown using Blackwell’s condition. To apply Blackwell’s

condition, we need to show that if p ∈P and λ ∈ R+, then p + λ1S ∈P , and

T(p + λ1S) ≤ Tp + βRλ1S (17)

holds pointwise on S. Fix p ∈ P and λ ∈ R+. That p + λ1S ∈ P is immediate from

the definition of P . Regarding (17), let p and λ be as above, and let q := p + λ1S. Pick

any (a, z) ∈ S. Let rp stand for Tp(a, z) and let rq stand for Tq(a, z). Using the fact that
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rp ≤ rq (since p ≤ q and T is monotone), we have

rq = max
{

βR
∫

q(Ra + y(z)− (u′)−1(rq), ẑ)Π(z, dẑ), ϕ(a, z)
}

≤ max
{

βR
∫

q(Ra + y(z)− (u′)−1(rp), ẑ)Π(z, dẑ), ϕ(a, z)
}

= max
{

βR
∫

p(Ra + y(z)− (u′)−1(rp), ẑ)Π(z, dẑ) + βRλ, ϕ(a, z)
}

= max
{

βR
∫

p(Ra + y(z)− (u′)−1(rp), ẑ)Π(z, dẑ), ϕ(a, z)
}
+ βRλ

= rp + βRλ.

Since (a, z) was arbitrary we have shown that (17) holds. Given that T is order preserv-

ing on P , (see lemma 7.4), we conclude that T is a contraction of modulus βR on the

space (P , ‖ · ‖).9

7.3. Proofs from section 4: Proposition 4.1

We now turn towards the proof of proposition 4.1. To begin, let U be the mapping from

C to P defined by Uc = u′ ◦ c.

Lemma 7.6. U is a bijection from C to P .

Proof. Fix c ∈ C . Our first claim is that Uc ∈ P . Since u′ is strictly decreasing,

c is increasing and both are continuous functions, Uc is continuous and decreasing.

Furthermore, c ∈ C implies 0 < c(a, z) ≤ Ra + y(z), and hence u′(Ra + y(z)) ≤

u′(c(a, z)) < ∞. In other words, Uc ∈ P . That U is one-to-one follows immediately

9See, for example, Stachurski (2009, theorem 6.3.8).
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from the strict monotonicity of u′. To show that U is onto, take any p ∈ P and let

c := (u′)−1p. The function c is in C , because u′(Ra + y(z)) ≤ p(z, a) < ∞, and hence

0 < c(a, z) ≤ Ra + y(z). Moreover, Uc = u′ ◦ (u′)−1 ◦ p = p. Hence U is onto as

claimed.

Lemma 7.7. The operators T and K are topologically conjugate, in the sense that U ◦ K =

T ◦U on C .

Proof. For p ∈P , (a, z) ∈ S and r ≥ ϕ(a, z), define

F(r, p, a, z) := r−max
{

βR
∫

p(Ra + y(z)− (u′)−1(r), ẑ)Π(z, dẑ), ϕ(a, z)
}

.

Observe that

F(r, p, a, z) = 0 ⇐⇒ r = Tp(a, z), (18)

and, moreover,

F(u′(t), u′ ◦ c, a, z) = 0 ⇐⇒ t = Kc(a, z). (19)

To show that UK = TU it suffices to show that K = U−1TU on C . To this end, fix c ∈ C

and (a, z) ∈ S. Let

t := (U−1TUc)(a, z) = (u′)−1(T(u′ ◦ c))(a, z).

We claim that, t = Kc(a, z). To see this, observe that by the definition of t we have

u′(t) = T(u′ ◦ c)(a, z). By (18), this is equivalent to F(u′(t), u′ ◦ c, a, z) = 0. In view of

(19), this is also equivalent to t = Kc(a, z), as was to be shown. Since (a, z) ∈ S was

arbitrary, we have established that Kc = U−1TUc on S. Since c ∈ C was arbitrary, we

have K = U−1TU on C . This is equivalent to the statement in the lemma.
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Proof of proposition 4.1. Beginning with the claim that (C , ρ) is a complete metric space,

recall from lemma 7.6 that U is a bijection from C to P . Since we can write the metric

ρ as ρ(c1, c2) = ‖Uc1 −Uc2‖ = d(Uc1, Uc2), the map U is also an isometry from (C , ρ)

to (P , d). Hence (C , ρ) is isometrically isomorphic to (P , d). As the latter is complete

(recall lemma 7.5), so is the former.

To see that K is a well-defined mapping from C to itself, observe from lemma 7.7 that

K = U−1TU. Since U is a bijection from C to P and T is a well-defined map from P

to itself, it follows immediately that K is a well-defined mapping from C to itself.

To see that K is a ρ-contraction of modulus βR, observe that, using lemmas 7.5 and 7.7,

we have

ρ(Kc1, Kc2) = ‖UKc1 −UKc2‖ = ‖TUc1 − TUc2‖ ≤ βR‖Uc1 −Uc2‖ = βR ρ(c1, c2).

Thus, K is a ρ-contraction of modulus βR as claimed.

7.4. Proofs from section 4: Theorems 4.1 and 4.2

Proof of theorem 4.1. That the pathwise Euler equation holds is trivial: Fix (a0, z0) ∈ S

and let {ct} be the path generated by c∗. Since c∗ satisfies (5) for any (a, z) ∈ S, it

satisfies (5) at (at, zt) in particular. Using the definition ct = c∗(at, zt) yields (3).

Regarding the transversality condition (4), let {ct} again be the path generated by c∗,

and let {at} be the corresponding asset path. Since c∗ ∈ C , there exists a finite constant

N such that u′ ◦ c∗ ≤ ϕ + N, and hence

E u′(ct)at+1 = E u′(c∗(at, zt))at+1 ≤ E u′(Rat + y(zt))at+1 + N E at+1.
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Since at+1 ≤ wt := Rat + y(zt), the right-hand side of this expression is dominated

by E u′(wt)wt + N E wt. Letting J ∈ (0, ∞) Decomposing the first expectation in this

expression over {wt < J} and {wt ≥ J}, we obtain

E u′(ct)at+1 ≤ J E u′(wt) + u′(J)E wt + N E wt.

From (10) we have wt ≤ Rt+1a0 + Rt ∑t
j=0 R−jyj, and hence

E wt ≤ Rt+1a0 + Rt M(z0). = Rt[Ra0 + M(z0)].

Moreover, by assumption 2.5, there is a constant N such that Et−1u′(y(zt)) ≤ N, and

hence, by iterated expectations,

E u′(wt) ≤ E u′(y(zt)) = EEt−1u′(y(zt)) ≤ N.

Combining these last three bounds, we get

βtE u′(ct)at+1 ≤ βt J N + (βR)t(u′(J) + N)[Ra0 + M(z0)].

Since β < 1 and βR < 1, this term converges to zero. In other words, the transversality

condition holds.

Proof of theorem 4.2. Let F be a bounded subset of S, and let c ∈ C . From the definitions

of r1 and r2 above theorem 4.2, it is immediate that

r1 ≤ u′ ◦ Knc(a, z) ≤ r2 and r1 ≤ u′ ◦ c∗(a, z) ≤ r2, ∀ (a, z) ∈ F, (20)

As in the statement of the theorem, let m denote the inverse of the function u′. By the

inverse function theorem and the fact that u′′ exists, is continuous and strictly negative,
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the derivative m′ exists on (0, ∞) and is given by m′(x) = 1/u′′(m(x)). Since r1 > 0

and r2 < ∞ and m′ is continuous and strictly negative on (0, ∞), it follows that the

constant

L(R, y, u, F) := max
r1≤r≤r2

|m′(r)| = max
r1≤r≤r2

−1
u′′(m(r))

exists and is finite. If we now fix (a, z) ∈ F and apply the bound (20), we obtain

|Knc(a, z)− c∗(a, z)| = |m ◦ u′ ◦ Knc(a, z)−m ◦ u′ ◦ c∗(a, z)|

≤ max
r1≤r≤r2

|m′(r)| |u′ ◦ Knc(a, z)− u′ ◦ c∗(a, z)|

≤ L(R, y, u, F) ρ(Knc, c∗).

Now observe that, by the triangle inequality,

ρ(Knc, c∗) ≤ ρ(Knc, KKnc) + ρ(KKnc, Kc∗) ≤ βR ρ(Kn−1c, Knc) + βR ρ(Knc, c∗).

∴ ρ(Knc, c∗) ≤ βR
1− βR

ρ(Kn−1c, Knc).

Combining the last two estimates gives the claim in the theorem.
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