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Preface

This is a quick course on modern econometric and statistical theory, focusing on
fundamental ideas and general principles. The course is intended to be concise—
suitable for learning concepts and results—rather than an encyclopedic treatment
or a reference manual. It includes background material in probability and statistics
that budding econometricians often need to build up.

Most of the topics covered here are standard, and I have borrowed ideas, results
and exercises from many sources, usually without individual citations to that effect.
Some of the large sample theory is new—although similar results have doubtless
been considered elsewhere. The large sample theory has been developed to illu-
minate more clearly the kinds of conditions that allow the law of large numbers
and central limit theorem to function, and to make large sample theory accessible to
students without knowledge of measure theory.

The other originality is in the presentation of otherwise standard material. In my
humble opinion, many of the mathematical arguments found here are neater, more
precise and more insightful than other econometrics texts at a similar level.

Finally, the course also teaches programming techniques via an extensive set of ex-
amples, and a long discussion of the statistical programming environment R in the
appendix. Even if only for the purpose of understanding theory, good programming
skills are important. In fact, one of the best ways to understand a result in econo-
metric theory is to first work your way through the proof, and then run a simulation
which shows the theory in action.

These notes have benefitted from the input of many students. In particular, I wish to
thank without implication Blair Alexander, Frank Cai, Yiyong Cai, Patrick Carvalho,
Paul Kitney, Bikramaditya Datta, Stefan Webb and Varang Wiriyawit.

v



Part I

Background Material
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Chapter 1

Probability

Probability theory forms the foundation stones of statistics and econometrics. If you
want to be a first class statistician/econometrician, then every extra detail of proba-
bility theory that you can grasp and internalize will prove an excellent investment.

1.1 Probability Models

We begin with the basic foundations of probability theory. What follows will involve
a few set operations, and you might like to glance over the results on set operations
(and the definition of functions) in §13.1.

1.1.1 Sample Spaces

In setting up a model of probability, we usually start with the notion of a sample
space, which, in general, can be any nonempty set, and is typically denoted Ω. We
can think of Ω as being the collection of all possible outcomes in a random experi-
ment. A typical element of Ω is denoted ω. The general idea is that a realization of
uncertainty will lead to the selection of a particular ω ∈ Ω.

Example 1.1.1. Let Ω := {1, . . . , 6} represent the six different faces of a dice. A
realization of uncertainty corresponds to a roll of the dice, with the outcome being
an integer ω in the set {1, . . . , 6}.

2



1.1. PROBABILITY MODELS 3

The specification of all possible outcomes Ω is one part of our probability model.
The other thing we need to do is to assign probabilities to outcomes. The obvious
thing to do here is to assign a probability to every ω in Ω, but it turns out, for
technical reasons beyond the scope of this text (see, e.g., Williams, 1991), that is is
not the right way forward. Instead, the standard approach is to assign probabilities
to subsets of Ω. In the language of probability theory, subsets of Ω are called events.
The set of all events is usually denoted by F , and we follow this convention.1

Example 1.1.2. Let Ω be any sample space. Two events we always find in F are Ω
itself and the empty set ∅. (The empty set is regarded as being a subset of every set,
and hence ∅ ⊂ Ω). In this context, Ω is called the certain event because it always
occurs (regardless of which outcome ω is selected, ω ∈ Ω is true by definition). The
empty set ∅ is called the impossible event.

In all of what follows, if B is an event (i.e., B ∈ F ), then the notation P(B) will
represent the probability that event B occurs. The way you should think about it is
this: P(B) represents the probability that when uncertainty is resolved and some ω ∈ Ω is
selected by “nature,” the statement ω ∈ B is true.

Example 1.1.3. Continuing example 1.1.1, let B be the event {1, 2}. The number
P(B) represents the probability that the face ω selected by the roll is either 1 or 2.

The second stage of our model construction is to assign probabilities to elements
of F . In order to make sure our model of probability is well behaved, it’s best to
put certain restrictions on P. (For example, we wouldn’t want to have a B with
P(B) = −93, as negative probabilities don’t make much sense.) These restrictions
are imposed in the next definition:

A probability P on (Ω,F ) is a function that associates to each event in F a number
in [0, 1], and, in addition, satisfies

1. P(Ω) = 1, and

2. Additivity: P(A ∪ B) = P(A) +P(B) whenever A, B ∈ F with A ∩ B = ∅.

1I’m skirting technical details here. In many common situations, we take F to be a proper subset
of the set of all subsets of Ω. In particular, we exclude a few troublesome subsets of Ω from F ,
because they are so messy that assigning probabilities to these sets cause problems for the theory.
See §1.1.2 for more discussion.

JOHN STACHURSKI January 10, 2014



1.1. PROBABILITY MODELS 4

Together, the triple (Ω,F ,P) is called a probability space. It describes a set of
events and their probabilities for a given experiment. Confession: I’ve simplified the
standard definition of a probability space slightly—in ways that will never matter to us in
this course—to avoid technical discussions that we don’t need to go into. See §1.1.2 if you’d
like to know more.

Remark 1.1.1. Additivity of P was defined for two sets, but this implies additivity
over any disjoint finite union. In particular, if A1, . . . , AJ are disjoint in the sense
that Ai ∩ Aj = ∅ whenever i 6= j, then P(∪J

j=1Aj) = ∑J
j=1P(Aj) also holds. See

exercise 1.5.1.

The axioms in the definition of P are fairly sensible. For starters, we are restricting
the probability of any event to be between zero and one. Second, it is clear why
we require P(Ω) = 1, since the realization ω will always be chosen from Ω by
its definition. Third, the additivity property is natural: To find the probability of
a given event, we can determine all the different (i.e., disjoint) ways that the event
could occur, and then sum their probabilities.

Example 1.1.4. Continuing example 1.1.1, let Ω := {1, . . . , 6} represent the six dif-
ferent faces of a dice, and, for A ∈ F , let

P(A) := #A/6, where #A := number of elements in A (1.1)

For example, given this definition of P, we see that P{2, 4, 6} = 3/6 = 1/2. It is
simple to check that P is a probability on (Ω,F ). Let’s check additivity. Suppose
that A and B are two disjoint subsets of {1, . . . , 6}. In this case we must have #(A ∪
B) = #A + #B, since, by disjointness, the number of elements in the union is just the
number contributed by A plus the number contributed by B. As a result,

P(A ∪ B) = #(A ∪ B)/6 = (#A + #B)/6 = #A/6 + #B/6 = P(A) +P(B)

The additivity property is very intuitive in this setting. For example, if we roll the
dice, the probability of getting an even number is the probability of getting a 2 plus
that of getting a 4 plus that of getting a 6. Formally,

P{2, 4, 6} = P[{2} ∪ {4} ∪ {6}]
= P{2}+P{4}+P{6} = 1/6 + 1/6 + 1/6 = 1/2

To finish off the proof that P is a probability on (Ω,F ), it only remains to check that
0 ≤ P(B) ≤ 1 for any B ∈ F , and that P(Ω) = 1. These details are left to you.

JOHN STACHURSKI January 10, 2014



1.1. PROBABILITY MODELS 5

Example 1.1.5. Consider a memory chip in a computer, made up of billions of tiny
switches. Imagine that a random number generator accesses a subset of N switches,
setting each one to “on” or “off” at random. One sample space for this experiment
is

Ω0 := {(b1, . . . , bN) : bn ∈ {on, off} for each n}

Letting zero represent off and one represent on, we can also use the more practical
space

Ω := {(b1, . . . , bN) : bn ∈ {0, 1} for each n}

Thus, Ω is the set of all binary sequences of length N. As our probability, we define

P(A) := 2−N(#A)

To see that this is indeed a probability on (Ω,F ) we need to check that 0 ≤ P(A) ≤ 1
for all A ⊂ Ω, that P(Ω) = 1, and that P is additive. Exercise 1.5.7 asks you to
confirm that P is additive. That P(Ω) = 1 follows from the fact that the number of
binary sequences of length N is 2N.

Now let’s go back to the general case, where (Ω,F ,P) is an arbitrary probability
space. From the axioms above, we can derive a suprising number of properties.
Let’s list the key ones, starting with the next fact.

Fact 1.1.1. Let (Ω,F ,P) be a probability space, and let A, B ∈ F . If A ⊂ B, then

1. P(B \ A) = P(B)−P(A);

2. P(A) ≤ P(B);

3. P(Ac) := P(Ω \ A) = 1−P(A); and

4. P(∅) = 0.

These claims are not hard to prove. For example, regarding the part 1, if A ⊂ B,
then we have B = (B \ A) ∪ A. (Sketching the Venn diagram will help confirm this
equality in your mind.) Since B \ A and A are disjoint, additivity of P now gives

P(B) = P(B \ A) +P(A) (whenever A ⊂ B)

This equality implies parts 1–4 of fact 1.1.1. Rearranging gives part 1, while nonneg-
ativity ofP gives part 2. Specializing to B = Ω gives part 3, and setting B = A gives
part 4.

JOHN STACHURSKI January 10, 2014



1.1. PROBABILITY MODELS 6

The property that if A ⊂ B, then P(A) ≤ P(B) is called monotonicity, and is
fundamental. If A ⊂ B, then we know that B occurs whenever A occurs (because if
ω lands in A, then it also lands in B). Hence, the probability of B should be larger.
Many crucial ideas in probability boil down to this one point.

Fact 1.1.2. If A and B are any (not necessarily disjoint) events, then

P(A ∪ B) = P(A) +P(B)−P(A ∩ B)

In particular, for any A, B ∈ F , we have P(A ∪ B) ≤ P(A) +P(B).

If A and B are events, then the conditional probability of A given B is

P(A | B) := P(A ∩ B)/P(B) (1.2)

It represents the probability that A will occur, given the information that B has oc-
curred. For the definition to make sense, it requires that P(B) > 0. Events A and B
are called independent if P(A ∩ B) = P(A)P(B). If A and B are independent, then
the conditional probability of A given B is just the probability of A.

Example 1.1.6. Consider an experiment where we roll a dice twice. A suitable sam-
ple space is the set of pairs (i, j), where i and j are between 1 and 6. The first element
i represents the outcome of the first roll, while the second element j represents the
outcome of the second roll. Formally,

Ω := {(i, j) : i, j ∈ {1, . . . , 6}}

For our probability, let’s define P(E) := #E/36, where #E is the number of elements
in E ⊂ Ω. (In this case, elements are pairs, so #E is the number of pairs in E.) Now
consider the events

A := {(i, j) ∈ Ω : i is even} and B := {(i, j) ∈ Ω : j is even}

In this case we have

A ∩ B = {(i, j) ∈ Ω : i and j are even}

With a bit of work we can verify thatP(A∩ B) = P(A)P(B), indicating that A and B
are independent under the probability P. To check this, we need to be able to count
the number of elements in A, B and A ∩ B. The basic principle for counting ordered
tuples is that the total number of possible tuples is the product of the number of
possibilities for each tuple. For example, the number of distinct tuples

(i, j, k) where i ∈ I, j ∈ J and k ∈ K

JOHN STACHURSKI January 10, 2014



1.1. PROBABILITY MODELS 7

is (#I)× (#J)× (#K). Hence, the number of elements in A is 3× 6 = 18, the number
of elements in B is 6× 3 = 18, and the number of elements in A ∩ B is 3× 3 = 9. As
a result,

P(A ∩ B) = 9/36 = 1/4 = (18/36)× (18/36) = P(A)P(B)

Thus, A and B are independent, as claimed.

A very useful result is the law of total probability, which says that if A ∈ F and
B1, . . . , BM is a partition of Ω (i.e., Bm ∈ F for each m, the Bm’s are mutually disjoint
in the sense that Bj ∩ Bk is empty when j 6= k, and ∪M

m=1Bm = Ω) with P(Bm) > 0
for all m, then

P(A) =
M

∑
m=1

P(A | Bm) ·P(Bm)

The proof is quite straightforward, although you should check that the manipula-
tions of intersections and unions work if you have not seen them before:

P(A) = P[A ∩ (∪M
m=1Bm)] = P[∪M

m=1(A ∩ Bm)]

=
M

∑
m=1

P(A ∩ Bm) =
M

∑
m=1

P(A | Bm) ·P(Bm)

Example 1.1.7. Here’s an informal example of the law of total probability: Suppose
I flip a coin to decide whether to take part in a poker game. Being a bad player,
the chance of losing money when I play is 2/3. The overall chance of losing money
(LM) that evening is

P{LM } = P{LM |play}P{play}+P{LM |don’t play}P{don’t play}

which is (2/3)× (1/2) + 0× (1/2) = 1/3.

1.1.2 Technical Details

Okay, as alluded to above, in my presentation of probability spaces, I’ve swept some
technical details under the carpet to make the presentation smooth. These details
won’t affect anything that follows, and this whole course can be completed success-
fully without knowing anything about them. Hence you can skip this section on
first reading. Nevertheless, if you intend to keep going deeper into probability and
statistics, eventually you will have to work your way through them. So let’s note
them for the record.

JOHN STACHURSKI January 10, 2014



1.1. PROBABILITY MODELS 8

Assigning probabilities to all subsets of Ω in a consistent way can be quite a difficult
task, so in practice we permit our set of events F to be a sub-collection of the subsets
of Ω, and only assign probabilities to elements of F . Thus, the first stage of our
model construction is to choose (i) a sample space Ω, and (ii) a collection of its
subsets F that we want to assign probabilities to.

When we choose F , usually we don’t just choose freely, because doing so will make
it hard to form a consistent theory. One restriction we always put on F is to require
that it contains the empty set ∅ and the whole set Ω. (In the definition of P, we
require that P(Ω) = 1. Hence we need Ω to be an element of F , the events we
assign probability to.)

Another sensible restriction concerns complements. For example, let’s suppose that
A ∈ F , so that P(A) is well defined, and represents the “probability of event A.”
Now, given that we can assign a probability to the event A, it would be a bit odd if
we couldn’t assign a probability to the event “not A”, which corresponds to Ac. So
normally we require that if A ∈ F , then Ac ∈ F . When this is true, we say that F is
“closed under the taking of complements”.

Also, let’s suppose that A and B are both in F , so we assign probabilities to these
events. In this case, it would be natural to think about the probability of the event
“A and B”, which corresponds to A∩ B. So we also require that if A and B are in F ,
then A ∩ B is also in F . We say that F is “closed under the taking of intersections.”

Perhaps we should also require that if A and B are in F , then A ∪ B is also in F?
Actually, we don’t have to, because (see fact 13.1.1 on page 362),

A ∪ B = (Ac ∩ Bc)c

Thus, if F is closed under the taking of complements and intersections, then F is
automatically closed under the taking of unions.

There is one more restriction that’s typically placed on F , which is the property of
being closed under “countable” unions. We won’t go into details. Suffice to say that
when F satisfies all these properties, it is called a “σ-algebra.”

Finally, in standard probability theory, there is another restriction placed on P that
I have not mentioned, called countable additivity. The definition of countable ad-
ditivity is that if A1, A2, . . . is a disjoint sequence of sets in F (disjoint means that
Ai ∩ Aj = ∅ for any i 6= j), then

P(∪i Ai) := P{ω ∈ Ω : ω ∈ Ai for some i} =
∞

∑
i=1
P(Ai)

JOHN STACHURSKI January 10, 2014



1.1. PROBABILITY MODELS 9

Why strengthen additivity to countable additivity? Countable additivity works be-
hind the scenes to make probability theory run smoothly (expectations operators are
suitably continuous, and so on). None of these details will concern us in this course.

If you wish, you can learn all about σ-algebras and countable additivity in any text
on measure theory. I recommend Williams (1991).

1.1.3 Random Variables

If you’ve done an elementary probability course, you might have been taught that a
random variable is a “value that changes randomly,” or something to that effect. To
work more deeply with these objects, however, we need a sounder definition. For
this reason, mathematicians define random variables to be functions from Ω intoR.
Thus, in this formal model, random variables convert outcomes in sample space into nu-
merical outcomes. This is useful, because numerical outcomes are easy to manipulate
and interpret.2

To visualize the definition, consider a random variable x, and imagine that “nature”
picks out an element ω in Ω according to some probability. The random variable
now sends this ω into x(ω) ∈ R. In terms of example 1.1.5, a random number gen-
erator picks out an ω, which is a binary sequence. A random variable x converts this
sequence into a real number. Depending on the conversion rule (i.e., depending on
the definition of x), the outcome x(ω) might simulate a Bernoulli random variable,
a uniform random variable, a normal random variable, etc.

Example 1.1.8. Recall example 1.1.5, with sample space

Ω := {(b1, . . . , bN) : bn ∈ {0, 1} for each n}

The set of events and probability were defined as follows:

F := all subsets of Ω and P(A) := 2−N(#A)

Consider a random variable x on Ω that returns the first element of any given se-
quence. That is,

x(ω) = x(b1, . . . , bN) = b1

2I’m skipping some technical details again. The definition of random variables on infinite Ω
is actually a bit more subtle. In practice, when identifying random variables with the class of all
functions from Ω toR, we typically exclude some particularly nasty (i.e., complicated and generally
badly behaved) functions. The remaining “nice” functions are our random variables. In this course
we will never meet the nasty functions, and there’s no need to go into further details. Those who
want to know more should consult any text on measure theory (e.g., Williams, 1991).
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Then x is a Bernoulli random variable (i.e., x takes only the values zero and one).
The probability that x = 1 is 1/2. Indeed,

P{x = 1} := P{ω ∈ Ω : x(ω) = 1}
= P{(b1, . . . , bN) : b1 = 1}
= 2−N × #{(b1, . . . , bN) : b1 = 1}

The number of length N binary sequences with b1 = 1 is 2N−1, so P{x = 1} = 1/2.

Example 1.1.9. Consider the sample space

Ω := {(b1, b2, . . .) : bn ∈ {0, 1} for each n}

Ω is called the set of all infinite binary sequences. (This is an infinite version of
the sample space in example 1.1.5. Imagine a computer with an infinite amount of
memory.) Consider an experiment where we flip a coin until we get a “heads”. We
let 0 represent tails and 1 represent heads. The experiment of flipping until we get a
heads can be modeled with the random variable

x(ω) = x(b1, b2, . . .) = min{n : bn = 1}

As per the definition, x is a well-defined function from Ω into R.3

Let’s go back to the general case, with arbitrary probability space (Ω,F ,P), and talk
a bit more about Bernoulli (i.e., binary) random variables. There is a generic way to
create Bernoulli random variables, using indicator functions. If Q is a statement,
such as “on the planet Uranus, there exists a tribe of three-headed monkeys,” then
1{Q} is considered as equal to one when the statement Q is true, and zero when the
statement Q is false. Hence, 1{Q} is a binary indicator of the truth of the statement
Q.

In general (in fact always), a Bernoulli random variable has the form

x(ω) = 1{ω ∈ C}

where C is some subset of Ω. Thus, x is a binary random variable indicating whether
or not the event C occurs (one means “yes” and zero means “no”).

3Actually, that’s not strictly true. What if ω = ω0 is an infinite sequence containing only zeros?
Then {n : bn = 1} = ∅. The convention here is to set x(ω0) = min{n : bn = 1} = min ∅ = ∞. But
then x is not a map into R, because it can take the value ∞. However, it turns out that this event has
probability zero, and hence we can ignore it. For example, we can set x(ω0) = 0 without changing
anything significant. Now we’re back to a well-defined function from Ω toR.
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Figure 1.1: Simple function x(ω) = s1{ω ∈ A}+ t1{ω ∈ B}

From Bernoulli random variables we can create “discrete” random variables. A dis-
crete random variable is a random variable with finite range.4 We can create dis-
crete random variables by taking “linear combinations” of Bernoulli random vari-
ables. (A linear combination of certain elements is formed by multiplying these
elements by scalars and then summing the result.) For example, let A and B be
disjoint subsets of Ω. The random variable

x(ω) = s1{ω ∈ A}+ t1{ω ∈ B} (1.3)

is a discrete random variable taking the value s when ω falls in A, t when ω falls in
B, and zero otherwise. (Check it!) Figure 1.1 shows a graph of x when Ω = R.

It turns out that any discrete random variable can be created by taking linear com-
binations of Bernoulli random variables. In particular, we can also define a discrete
random variable as a random variable having the form

x(ω) =
J

∑
j=1

sj1{ω ∈ Aj} (1.4)

We will work with this expression quite a lot. In doing so, we will always assume
that

4See §13.1.1 for the definition of “range.” Our usage is not entirely standard, in that many texts
call random variables with countably infinite range discrete as well.
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• the scalars s1, . . . , sJ are distinct, and
• the sets A1, . . . , AJ form partition of Ω.5

Given these assumptions, we then have

• x(ω) = sj if and only if ω ∈ Aj.
• {x = sj} = Aj.
• P{x = sj} = P(Aj).

The second two statements follow from the first. Convince yourself of these results
before continuing.

Before finishing this section, let’s clarify a common notational convention with ran-
dom variables that we’ve adopted above and that will be used below. With a ran-
dom variable x, we often write

{x has some property}

as a shorthand for
{ω ∈ Ω : x(ω) has some property}

We’ll follow this convention, but you should translated it backwards and forwards
in your mind if you’re not yet familiar with the notation. To give you an example,
consider the claim that, for any random variable x,

P{x ≤ a} ≤ P{x ≤ b} whenever a ≤ b (1.5)

This is intuitively obvious. The mathematical argument goes as follows: Observe
that

{x ≤ a} := {ω ∈ Ω : x(ω) ≤ a} ⊂ {ω ∈ Ω : x(ω) ≤ b} =: {x ≤ b}

(The inclusion ⊂ must hold, because if ω is such that x(ω) ≤ a, then, since a ≤ b,
we also have x(ω) ≤ b. Hence any ω in the left-hand side is also in the right-hand
side.) The result in (1.5) now follows from monotonicity of P (fact 1.1.1 on page 5).

5That is, Ai ∩ Aj = ∅ when i 6= j, and ∪j Aj = Ω.
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1.1.4 Expectations

Our next task is to define expectations for an arbitrary random variable x on prob-
ability space (Ω,F ,P). Roughly speaking, E [x] is defined as the “sum” of all pos-
sible values of x, weighted by their probabilities. (Here “sum” is in quotes because
there may be an infinite number of possibilities.) The expectationE [x] of x also rep-
resents the “average” value of x over a “very large” sample. (This is a theorem, not
a definition—see the law of large numbers below.)

Let’s start with the definition when x is a discrete random variable. Let x be the
discrete random variable x(ω) = ∑J

j=1 sj1{ω ∈ Aj}, as defined in (1.4). In this case,
the expectation of x is defined as

E [x] :=
J

∑
j=1

sjP(Aj) (1.6)

The definition is completely intuitive: For this x, given our assumption that the sets
Aj’s are a partition of Ω and the sj’s are distinct, we have

Aj = {x = sj} := {ω ∈ Ω : x(ω) = sj}

Hence, (1.6) tells us that

E [x] =
J

∑
j=1

sjP{x = sj}

Thus, the expectation is the sum of the different values that x may take, weighted
by their probabilities.

How about arbitrary random variables, with possibly infinite range? Unfortunately,
the full definition of expectation for these random variables involves measure the-
ory, and we can’t treat in in detail. But the short story is that any arbitrary random
variable x can be approximated by a sequence of discrete variables xn. The expecta-
tion of discrete random variables was defined in (1.6). The expectation of the limit x
is then defined as

E [x] := lim
n→∞

E [xn] (1.7)

When things are done carefully (details omitted), this value doesn’t depend on the
particular approximating sequence {xn}, and hence the value E [x] is well defined.

Let’s list some facts about expectation, and then discuss them one by one.
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Fact 1.1.3. Expectation of indicators equals probability of event: For any A ∈ F ,

E [1{ω ∈ A}] = P(A) (1.8)

Fact 1.1.4. Expectation of a constant is the constant: If α ∈ R, then E [α] = α.

Fact 1.1.5. Linearity: If x and y are random variables and α and β are constants, then

E [αx + βy] = αE [x] + βE [y]

Fact 1.1.6. Monotonicity: If x, y are random variables and x ≤ y,6 then E [x] ≤ E [y].

Fact 1.1.3 follows from the definition in (1.6). We have

1{ω ∈ A} = 1× 1{ω ∈ A}+ 0× 1{ω ∈ Ac}

Applying (1.6), we get

E [1{ω ∈ A}] = 1×P(A) + 0×P(Ac) = P(A)

Fact 1.1.4 say that the expectation of a constant α is just the value of the constant.
The idea here is that the constant α should be understood in this context as the
constant random variable α1{ω ∈ Ω}. From our definition (1.6), the expectation of
this “constant” is indeed equal to its value α:

E [α] := E [α1{ω ∈ Ω}] = αP(Ω) = α

Now let’s think about linearity (fact 1.1.5). The way this is proved, is to first prove
linearity for discrete random variables, and then extend the proof to arbitrary ran-
dom variables via (1.7). We’ll omit the last step, which involves measure theory.
We’ll also omit the full proof for discrete random variables, since it’s rather long.
Instead, let’s cover a quick sketch of the argument that still provides most of the
intuition.

Suppose we take the random variable x in (1.4) and double it, producing the new
random variable y = 2x. More precisely, for each ω, we set y(ω) = 2x(ω). (What-
ever happens with x, we’re going to double it and y will return that value.) In that
case, we have E [y] = 2E [x]. To see this, observe that

y(ω) = 2x(ω) = 2

[
J

∑
j=1

sj1{ω ∈ Aj}
]
=

J

∑
j=1

2sj1{ω ∈ Aj}

6The statement x ≤ y means that x is less than y for any realization of uncertainty. Formally, it
means that x(ω) ≤ y(ω) for all ω ∈ Ω.
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Hence, applying (1.6),

E [y] =
J

∑
j=1

2sjP(Aj) = 2

[
J

∑
j=1

sjP(Aj)

]
= 2E [x]

What we have shown is that E [2x] = 2E [x]. Looking back over our argument, we
can see that there is nothing special about the number 2 here—we could have used
any constant. In other words,

For any constant γ, we have E [γx] = γE [x]

Another aspect of linearity of expectations is additivity, which says that given ran-
dom variables x and y, the statementE [x+ y] = E [x] +E [y] is always true. Instead
of giving the full proof, let’s show this for the Bernoulli random variables

x(ω) = 1{ω ∈ A} and y(ω) = 1{ω ∈ B} (1.9)

Consider the sum x+ y. By this, we mean the random variable z(ω) = x(ω)+ y(ω).
More succinctly, (x + y)(ω) := x(ω) + y(ω). We claim thatE [x + y] = E [x] +E [y].
To see that this is the case, note first that

(x + y)(ω) = 1{ω ∈ A \ B}+ 1{ω ∈ B \ A}+ 21{ω ∈ A ∩ B}

(To check this, just go through the different cases for ω, and verify that the right
hand side of this expression agrees with x(ω) + y(ω). Sketching a Venn diagram
will help.) Therefore, by the definition of expectation,

E [x + y] = P(A \ B) +P(B \ A) + 2P(A ∩ B) (1.10)

Now observe that
A = (A \ B) ∪ (A ∩ B)

It follows (why?) that

E [x] := P(A) = P(A \ B) +P(A ∩ B)

Performing a similar calculation with y produces

E [y] := P(B) = P(B \ A) +P(A ∩ B)

Adding these two produces the value on the right-hand side of (1.10), and we have
now confirmed that E [x + y] = E [x] +E [y].
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Figure 1.2: Cauchy cdf

1.2 Distributions

All random variables have distributions. Distributions summarize the probabilities
of different outcomes for the random variable in question, and allow us to compute
expectations. In this section, we describe the link between random variables and
distributions.

1.2.1 CDFs

A cumulative distribution function (cdf) on R is a right-continuous, monotone in-
creasing function F : R → [0, 1] satisfying lims→−∞ F(s) = 0 and lims→∞ F(s) = 1.
(F is monotone increasing if F(s) ≤ F(s′) whenever s ≤ s′, and right continuous if
F(sn) ↓ F(s) whenever sn ↓ s.)

Example 1.2.1. The function F(s) = arctan(s)/π + 1/2 is a cdf—one variant of the
Cauchy distribution. A plot is given in figure 1.2.
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Let x be a random variable on some probability space (Ω,F ,P), and consider the
function

Fx(s) := P{x ≤ s} := P{ω ∈ Ω : x(ω) ≤ s} (s ∈ R) (1.11)

It turns out that this function is always a cdf.7 We say that Fx is the cdf of x, or,
alternatively, that Fx is the distribution of x, and write x ∼ Fx.

We won’t go through the proof that the function Fx defined by (1.11) is a cdf. Note
however that monotonicity is immediate from (1.5) on page 12.

Fact 1.2.1. If x ∼ F, then P{a < x ≤ b} = F(b)− F(a) for any a ≤ b.

Proof: If a ≤ b, then {a < x ≤ b} = {x ≤ b} \ {x ≤ a} and {x ≤ a} ⊂ {x ≤ b}.
Applying fact 1.1.1 on page 5 gives the desired result.

A cdf F is called symmetric if F(−s) = 1− F(s) for all s ∈ R.8 The proof of the next
fact is an exercise (exercise 1.5.12).

Fact 1.2.2. Let F be a cdf and let x ∼ F. If F is symmetric and P{x = s} = 0 for all
s ∈ R, then the distribution F|x| of the absolute value |x| is given by

F|x|(s) := P{|x| ≤ s} = 2F(s)− 1 (s ≥ 0)

1.2.2 Densities and Probability Mass Functions

Cdfs are important because every random variable has a well-defined cdf via (1.11).
However, they can be awkward to manipulate mathematically, and plotting cdfs
is not a very good way to convey information about probabilities. For example,
consider figure 1.2. The amount of probability mass in different regions of the x-
axis is determined by the slope of the cdf. Research shows that humans are poor at
extracting quantitative information from slopes. They do much better with heights,
which leads us into our discussion of densities and probability mass functions.

Densities and probability mass functions correspond to two different, mutually ex-
clusive cases. The first (density) case arises when the increase of the cdf in ques-
tion is smooth, and contains no jumps. The second (probability mass function) case

7The following is also true: For every cdf F, there exists a probability space (Ω,F ,P) and a ran-
dom variable x : Ω→ R such that the distribution of x is F. Exercise 1.5.14 gives some hints on how
the construction works.

8Thus, the probability that x ≤ −s is equal to the probability that x > s. Centered normal distri-
butions and t-distributions have this property.
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arises when the increase consists of jumps alone. Let’s have a look at these two
situations, starting with the second case.

The pure jump case occurs when the cdf represents a discrete random variable. To
understand this, suppose that x takes values s1, . . . , sJ . Let pj := P{x = sj}. We then
have 0 ≤ pj ≤ 1 for each j, and ∑J

j=1 pj = 1 (exercise 1.5.13). A finite collection of
numbers p1, . . . , pJ such that 0 ≤ pj ≤ 1 and p1 + · · ·+ pJ = 1 is called a probability
mass function (pmf). The cdf corresponding to this random variable is

Fx(s) =
J

∑
j=1
1{sj ≤ s}pj (1.12)

How do we arrive at this expression? Because, for this random variable,

P{x ≤ s} = P

 ⋃
j s.t. sj≤s

{x = sj}

 = ∑
j s.t. sj≤s

P{x = sj} =
J

∑
j=1
1{sj ≤ s}pj

Visually, Fx is a step function, with a jump up of size pj at point sj. Figure 1.3 gives
an example with J = 2.

The other case of interest is the density case. A density is a nonnegative function
p that integrates to 1. For example, suppose that F is a smooth cdf, so that the
derivative F′ exists. Let p := F′. By the fundamental theorem of calculus, we then
have ∫ s

r
p(t)dt =

∫ s

r
F′(t)dt = F(s)− F(r)

From the definition of cdfs, we can see that p is nonnegative and
∫ +∞
−∞ p(s)ds = 1.

In other words, p is a density. Also, taking the limit as r → −∞ we obtain

F(s) =
∫ s

−∞
p(t)dt

which tells us that F can be recovered from p.

More generally, if F is the cdf of random variable x and p : R→ [0, ∞) satisfies

F(s) =
∫ s

−∞
p(t)dt for all s ∈ R

then p is called the density of x.

Not every random variable has a density. The exact necessary and sufficient condition
for a density to exist is that F is “absolutely continuous.” The most important special
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Figure 1.4: Cauchy density
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case of absolute continuity is when F is differentiable. (See any text on measure
theory for details.) For our purposes, you can think of absolute continuity meaning
that F does not have any jumps. In particular, discrete random variables are out, as
is any random variable putting positive probability mass on a single point.9

Fact 1.2.3. If x has a density, then P{x = s} = 0 for all s ∈ R.

As discussed above, cdfs are useful because every random variable has one, but
pmfs and densities are nicer to work with, and visually more informative. For ex-
ample, consider figure 1.4, which shows the density corresponding to the Cauchy
cdf in figure 1.2. Information about probability mass is now conveyed by height
rather than slope, which is easier for us humans to digest.

1.2.3 The Quantile Function

Let F be any cdf on R. Suppose that F is strictly increasing, so that the inverse
function F−1 exists:

F−1(q) := the unique s such that F(s) = q (0 < q < 1) (1.13)

The inverse of the cdf is called the quantile function, and has many applications in
probability and statistics.

Example 1.2.2. The quantile function associated with the Cauchy cdf in example 1.2.1
is F−1(q) = tan[π(q− 1/2)]. See figure 1.5.

Things are a bit more complicated when F is not strictly increasing, as the inverse
F−1 is not well defined. (If F is not strictly increasing, then there exists at least two
distinct points s and s′ such that F(s) = F(s′).) This problem is negotiated by setting

F−1(q) := inf{s ∈ R : F(s) ≥ q} (0 < q < 1)

This expression is a bit more complicated, but in the case where F is strictly increas-
ing, it reduces to (1.13).

The value F−1(1/2) is called the median of F.

9In elementary texts, random variables with densities are often called “continuous random vari-
ables.” The notation isn’t great, because “continuous” here has nothing to do with the usual defini-
tion of continuity of functions.
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Figure 1.5: Cauchy quantile function

The quantile function features in hypothesis testing, where it can be used to define
critical values (see §5.3). An abstract version of the problem is as follows: Let x ∼ F,
where F is strictly increasing, differentiable (so that a density exists and x puts no
probability mass on any one point) and symmetric. Given α ∈ (0, 1), we want to
find the c such that P{−c ≤ x ≤ c} = 1− α (see figure 1.6). The solution is given
by c := F−1(1− α/2). That is,

c = F−1(1− α/2) =⇒ P{|x| ≤ c} = 1− α (1.14)

To see this, fix α ∈ (0, 1). From fact 1.2.2, we have

P{|x| ≤ c} = 2F(c)− 1 = 2F[F−1(1− α/2)]− 1 = 1− α

In the case where F is the standard normal cdf Φ, this value c is usually denoted by
zα/2. We will adopt the same notation:

zα/2 := Φ−1(1− α/2) (1.15)
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Figure 1.6: Finding critical values

1.2.4 Expectations from Distributions

Until now, we’ve been calculating expectations using the expectation operator E ,
which was defined from a given probability P in §1.1.4. One of the most useful
facts about distributions is that one need not know about x or E to calculate E [x]—
knowledge of the distribution of x is sufficient.

Mathematically, this is an interesting topic, and a proper treatment requires measure
theory (see, e.g., Williams, 1991). Here I’ll just tell you what you need to know for
the course, and then follow that up with a bit of intuition.

In all of what follows, h is an arbitrary function from R to R.

Fact 1.2.4. If x is a discrete random variable taking values s1, . . . , sJ with probabilities
p1, . . . , pJ , then

E [h(x)] =
J

∑
j=1

h(sj)pj (1.16)

Fact 1.2.5. If x is a “continuous” random variable with density p, then

E [h(x)] =
∫ ∞

−∞
h(s)p(s)ds (1.17)
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It’s convenient to have a piece of notation that captures both of these cases. As a
result, if x ∼ F, then we will write

E [h(x)] =
∫

h(s)F(ds)

The way you should understand this expression is that when F is differentiable with
derivative p = F′, then

∫
h(s)F(ds) is defined as

∫ ∞
−∞ h(s)p(s)ds. If, on the other

hand, F is the step function F(s) = ∑J
j=1 1{sj ≤ s}pj corresponding to the discrete

random variable in fact 1.2.4, then
∫

h(s)F(ds) is defined as ∑J
j=1 h(sj)pj.

Example 1.2.3. Suppose that h(x) = x2. In this case, E [h(x)] is the second moment
of x. If we know the density p of x, then fact 1.2.5 can be used to evaluate that second
moment by solving the integral on the right-hand side of (1.17).

Just for the record, let me note that if you learn measure theory you will come to
understand that, for a given cdf F, the expression

∫
h(s)F(ds) has its own precise

definition, as the “Lebesgue-Stieltjes” integral of h with respect to F. In the spe-
cial case where F is differentiable with p = F′, one can prove that

∫
h(s)F(ds) =∫ ∞

−∞ h(s)p(s)ds, where the left hand side is the Lebesgue-Stieltjes integral, and the
right hand side is the ordinary (Riemann) integral you learned in high school. An
similar statement holds for the discrete case. However, this is not the right place
for a full presentation of the Lebesgue-Stieltjes integral. We want to move on to
statistics.

Although we’re skipping a lot of technical details here, we can at least prove fact 1.2.4.
This is the discrete case, where x is of the form x(ω) = ∑J

j=1 sj1{ω ∈ Aj}, and
pj := P{x = sj} = P(Aj). As usual, the values {sj} are distinct and the sets {Aj}
are a partition of Ω. As we saw in §1.1.4, the expectation is

E [x] =
J

∑
j=1

sjP(Aj) =
J

∑
j=1

sjP{x = sj} =
J

∑
j=1

sj pj

Now let h : R→ R. You should be able to convince yourself that

h(x(ω)) =
J

∑
j=1

h(sj)1{ω ∈ Aj}

(Pick an arbitrary Aj and check that the left- and right-hand sides are equal when
ω ∈ Aj.) This is a discrete random variable, which we can take the expectation of
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using (1.6) (page 13). We get

E [h(x)] =
J

∑
j=1

h(sj)P(Aj) =
J

∑
j=1

h(sj)pj

Fact 1.2.4 is now confirmed.

1.2.5 Common Distributions

Let’s list a few well-known distributions that will come up in this course.

Let a < b. The uniform distribution on interval [a, b] is the distribution associated
with the density

p(s; a, b) :=
1

b− a
(a ≤ s ≤ b)

(If s < a or s > b, then p(s; a, b) := 0.) The mean is∫ b

a
s p(s; a, b)ds =

a + b
2

The univariate normal density or Gaussian density is a function p of the form

p(s) := p(s; µ, σ) := (2πσ2)−1/2 exp
{
−1

2
(s− µ)2σ−2

}
for some µ ∈ R and σ > 0. We represent this distribution symbolically byN (µ, σ2).
The distribution N (0, 1) is called the standard normal distribution

It is well-known that if x ∼ N (µ, σ2), then E [x] = µ, and var[x] = σ2. Hence the
two parameters separately define the mean and the variance (or standard deviation),
and this is one of many attractive features of the distribution.

Fact 1.2.6. If x1, . . . , xN are normally distributed and α0, . . . , αN are any constants,
then α0 + ∑N

n=1 αnxn is also normally distributed.

The chi-squared distribution with k degrees of freedom is the distribution with
density

p(s; k) :=
1

2k/2Γ(k/2)
sk/2−1e−s/2 (s ≥ 0)

where Γ is the Gamma function (details omitted). If x has a distribution described
by this density, then we write x ∼ χ2(k).
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Student’s t-distribution with k degrees of freedom, or, more simply, the t-distribution
with k degrees of freedom, is the distribution on R with density

p(s; k) :=
Γ( k+1

2 )

(kπ)1/2Γ( k
2)

(
1 +

s2

k

)−(k+1)/2

The F-distribution with parameters k1, k2 is the distribution with the unlikely look-
ing density

p(s; k1, k2) :=

√
(k1s)k1kk2

2 /[k1s + kk1+k2
2 ]

sB(k1/2, k2/2)
(s ≥ 0)

where B is the Beta function (details omitted). The F-distribution arises in certain
hypothesis tests, some of which we will examine later.

1.3 Dependence

[roadmap]

1.3.1 Joint Distributions

Consider a collection of N random variables x1, . . . , xN. For each individual random
variable xn : Ω→ R, the distribution Fn of xn is

Fn(s) := P{xn ≤ s} (−∞ < s < ∞) (1.18)

This distribution tells us about the random properties of xn viewed as a single entity.
But we often want to know about the relationships between the variables x1, . . . , xN,
and outcomes for the group of variables as a whole. To quantify these things, we
define the joint distribution of x1, . . . , xN to be

F(s1, . . . , sN) := P{x1 ≤ s1, . . . , xN ≤ sN} (−∞ < sn < ∞ ; n = 1, . . . , N)

In this setting, the distribution Fn of xn is sometimes called the marginal distribu-
tion, in order to distinguish it from the joint distribution.

The joint density of x1, . . . , xN, if it exists, is a function p : RN → [0, ∞) satisfying∫ tN

−∞
· · ·

∫ t1

−∞
p(s1, . . . , sN)ds1 · · · dsN = F(t1, . . . , tN) (1.19)
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for all tn ∈ R, n = 1, . . . , N.

Typically, the joint distribution cannot be determined from the N marginal distri-
butions alone, since the marginals do not tell us about the interactions between the
different variables. Once special case where we can tell the joint from the marginals
is when there is no interaction. This is called independence, and we treat it in the
next section.

From joint densities we can construct conditional densities. The conditional density
of xk+1, . . . , xN given x1 = s1, . . . , xk = sk is defined by

p(sk+1, . . . , sN | s1, . . . , sk) :=
p(s1, . . . , sN)

p(s1, . . . , sk)
(1.20)

Rearranging this expression we obtain a decomposition of the joint density:

p(s1, . . . , sN) = p(sk+1, . . . , sN | s1, . . . , sk)p(s1, . . . , sk) (1.21)

This decomposition is useful in many situations.

1.3.2 Independence

Let x1, . . . , xN be a collection of random variables with xn ∼ Fn, where Fn is a cdf.
The variables x1, . . . , xN are called identically distributed Fn = Fm for all n, m. They
are called independent if, given any s1, . . . , sN, we have

P{x1 ≤ s1, . . . , xN ≤ sN} = P{x1 ≤ s1} × · · · ×P{xN ≤ sN} (1.22)

Equivalently, if F is the joint distribution of x1, . . . , xN and Fn is the marginal distri-
bution of xn, then independence states that

F(s1, . . . , sN) = F1(s1)× · · · × FN(sN) =
N

∏
n=1

Fn(sn)

We use the abbreviation IID for collections of random variables that are both inde-
pendent and identically distributed.

Example 1.3.1. Consider a monkey throwing darts at a dartboard. Let x denote the
horizontal location of the dart relative to the center of the board, and let y denote
the vertical location. (For example, if x = −1 and y = 3, then the dart is 1cm to the
left of the center, and 3cm above.) At first pass, we might suppose that x and y are
independent and identically distributed.
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Fact 1.3.1. If x1, . . . , xM are independent and E |xm| is finite for each m, then

E

[
M

∏
m=1

xm

]
=

M

∏
m=1

E [xm]

We won’t prove the last fact in the general case, as this involves measure theory.
However, we can illustrate the idea by showing that E [xy] = E [x]E [y] when x and
y are independent and defined by (1.9). In this case, it can be shown (details omitted)
that the random variables x and y are independent precisely when the events A and
B are independent. Now observe that

(xy)(ω) := x(ω)y(ω) = s1{ω ∈ A}t1{ω ∈ B} = st1{ω ∈ A ∩ B}

Hence, by the definition of expectations, we have

E [xy] = stP(A ∩ B) = stP(A)P(B) = sP(A)tP(B) = E [x]E [y]

Fact 1.3.2. If x and y are independent and g and f are any functions, then f (x) and
g(y) are independent.

An important special case of the “independence means multiply” rule is as follows.

Fact 1.3.3. If random variables x1, . . . , xN are independent, and each has density pn,
then the joint density p exists, and is the product of the marginal densities:

p(s1, . . . , sN) =
N

∏
n=1

pn(sn)

Here are some useful facts relating independence and certain common distributions.

Fact 1.3.4. If x1, . . . , xk
IID∼ N (0, 1), then

Q :=
k

∑
i=1

x2
i ∼ χ2(k)

Fact 1.3.5. If Q1, . . . , QJ are independent with Qj ∼ χ2(k j), then ∑J
j=1 Qj ∼ χ2(∑j k j).

Fact 1.3.6. If Z and Q are two random variables such that

1. Z ∼ N (0, 1),
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2. Q ∼ χ2(k), and

3. Z and Q are independent,

then Z(k/Q)1/2 has the t-distribution with k degrees of freedom.

Fact 1.3.7. If Q1 ∼ χ2(k1) and Q2 ∼ χ2(k2) are independent, then

Q1/k1

Q2/k2

is distributed as F(k1, k2).

1.3.3 Variance and Covariance

Let x ∼ F. For k ∈ N, the k-th moment of x is defined as E [xk] =
∫

skF(ds). If
E [|x|k] < ∞ then the k-th moment is said to exist. For a random variable with the
Cauchy distribution, even the first moment does not exist. For the normal distribu-
tion, every moment exists.

Fact 1.3.8. If the k-th moment of x exists, then so does the j-th moment for all j ≤ k.

The variance of random variable x is defined as

var[x] := E [(x−E [x])2]

This gives a measure of the dispersion of x. (Not all random variables have a well
defined variance, but in general we’ll just talk about the variance of a given random
variable without adding the caveat “assuming it exists.”) The standard deviation
of x is

√
var[x].

The covariance of random variables x and y is defined as

cov[x, y] := E [(x−E [x])(y−E [y])]

Fact 1.3.9. If x1, . . . , xN are random variables and α1, . . . , αN are constant scalars,
then

var

[
N

∑
n=1

αnxn

]
=

N

∑
n=1

α2
n var[xn] + 2 ∑

n<m
αnαm cov[xn, xm]
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In particular, if α and β are real numbers and x and y are random variables, then
var[α] = 0,10 var[α + βx] = β2 var[x], and

var[αx + βy] = α2 var[x] + β2 var[y] + 2αβ cov[x, y]

Given two random variables x and y with finite variances σ2
x and σ2

y respectively, the
correlation of x and y is defined as

corr[x, y] :=
cov[x, y]

σx σy

If corr[x, y] = 0, we say that x and y are uncorrelated. For this to occur, it is nec-
essary and sufficient that cov[x, y] = 0. Positive correlation means that corr[x, y] is
positive, while negative correlation means that corr[x, y] is negative.

Fact 1.3.10. Given any two random variables x, y and positive constants α, β, we
have

−1 ≤ corr[x, y] ≤ 1 and corr[αx, βy] = corr[x, y]

Fact 1.3.11. If x and y are independent, then cov[x, y] = corr[x, y] = 0.

Note that the converse is not true: One can construct examples of dependent ran-
dom variables with zero covariance.

1.3.4 Best Linear Predictors

As a little exercise that starts moving us in the direction of statistics, let’s consider
the problem of predicting the value of a random variable y given knowledge of the
value of a second random variable x. Thus, we seek a function f such that f (x) is
close to y on average. To measure the “average distance” between f (x) and y, we
will use the mean squared deviation between f (x) and y, which is

E [(y− f (x))2]

As we will learn in chapter 3, the minimizer of the mean squared deviation over all
functions of x is obtained by choosing f (x) = E [y | x], where the right-hand size is
the conditional expectation of y given x. However, the conditional expectation may

10Here var[α] should be understood as var[α1{ω ∈ Ω}], as was the case when we discussed
fact 1.1.4 on page 14.
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be nonlinear and complicated, so let’s now consider the simpler problem of finding
a good predictor of y within a small and well-behaved class of functions. The class
of functions we will consider is the set of “linear” functions

L := { all functions of the form `(x) = α + βx}

(While elementary courses refer to these functions as linear, in fact they are not linear
unless α = 0 (see §2.1.3). The class of functions L is more correctly known as the set
of affine functions.) Thus, we consider the problem

min
`∈L

E [(y− `(x))2] = min
α,β∈R

E [(y− α− βx)2] (1.23)

Expanding the square on the right-hand side and using linearity of E , the objective
function becomes

ψ(α, β) := E [y2]− 2αE [y]− 2βE [xy] + 2αβE [x] + α2 + β2E [x2]

Computing the derivatives and solving the equations

∂ψ(α, β)

∂α
= 0 and

∂ψ(α, β)

∂β
= 0

We obtain (exercise 1.5.25) the minimizers

β∗ :=
cov[x, y]

var[x]
and α∗ := E [y]− β∗E [x] (1.24)

The best linear predictor is therefore

`∗(x) := α∗ + β∗x

If you’ve studied elementary linear least squares regression before, you will realize
that α∗ and β∗ are the “population” counterparts for the coefficient estimates in the
regression setting. We’ll talk more about the connections in the next chapter.

1.4 Asymptotics

In statistics, we often want to know how our tests and procedures will perform as
the amount of data we have at hand becomes large. To this end, we now investigate
the limiting properties of sequences of random variables. We begin by discussing
three modes of convergence for random variables, all of which are used routinely in
econometrics.

JOHN STACHURSKI January 10, 2014



1.4. ASYMPTOTICS 31

1.4.1 Modes of Convergence

Let {xn}∞
n=1 be a sequence of random variables. We say that {xn}∞

n=1 converges to
random variable x in probability if

for any δ > 0, P{|xn − x| > δ} → 0 as n→ ∞

In symbols, this convergence is represented by xn
p→ x. In almost all the applications

we consider, the limit x will be a constant. The next example illustrates the definition
for this case.

Example 1.4.1. If xn ∼ N (α, 1/n), then xn
p→ α. That is, for any δ > 0, we have

P{|xn − α| > δ} → 0. Fixing δ > 0, the probability P{|xn − α| > δ} is shown
in figure 1.7 for two different values of n, where it corresponds to the size of the
shaded areas. This probability collapses to zero as n → ∞, decreasing the variance
and causing the density to become more peaked.

A full proof of the convergence result in example 1.4.1 can be found by looking at the
normal density and bounding tail probabilities. However, a much simpler proof can
also be obtained by exploiting the connection between convergence in probability
and convergence in mean squared error. The details are below.

Fact 1.4.1. Regarding convergence in probability, the following statements are true:

1. If g : R→ R is continuous and xn
p→ x, then g(xn)

p→ g(x).

2. If xn
p→ x and yn

p→ y, then xn + yn
p→ x + y and xnyn

p→ xy.

3. If xn
p→ x and αn → α, then xn + αn

p→ x + α and xnαn
p→ xα.11

We say that {xn} converges to x in mean square if

E [(xn − x)2]→ 0 as n→ ∞

In symbols, this convergence is represented by xn
ms→ x.

Fact 1.4.2. Regarding convergence in mean square, the following statements are
true:

11Here {αn} is a nonrandom scalar sequence.
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Figure 1.7: P{|xn − α| > δ} for xn ∼ N (α, 1/n)

1. If xn
ms→ x, then xn

p→ x.

2. If α is constant, then xn
ms→ α if and only if E [xn]→ α and var[xn]→ 0.

Part 1 of fact 1.4.2 follows from Chebychev’s inequality, which states that for any
random variable y with finite second moment and any δ > 0, we have

P{|y| ≥ δ} ≤ E [y2]

δ2 (1.25)

(See exercise 1.5.29.) Using monotonicity ofP and then applying (1.25) to y = xn− x,
we obtain

P{|xn − x| > δ} ≤ P{|xn − x| ≥ δ} ≤ E [(xn − x)2]

δ2

Part 1 of fact 1.4.2 follows. Part 2 is implied by the equality

E [(xn − α)2] = var[xn] + (E [xn]− α)2

Verification of this equality is an exercise.

Example 1.4.2. In example 1.4.1, we stated that if xn ∼ N (α, 1/n), then xn
p→ α. This

follows from parts 1 and 2 of fact 1.4.2, since E [xn] = α and var[xn] = 1/n→ 0.
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Figure 1.8: t-distribution with k df converges to N (0, 1) as k→ ∞

Let {Fn}∞
n=1 be a sequence of cdfs, and let F be a cdf. We say that Fn converges

weakly to F if, for any s such that F is continuous at s, we have

Fn(s)→ F(s) as n→ ∞

Example 1.4.3. It is well-known that the cdf of the t-distribution with k degrees
of freedom converges to the standard normal cdf as k → ∞. This convergence is
illustrated in figure 1.8.

Sometimes densities are easier to work with than cdfs. In this connection, note that
pointwise convergence of densities implies weak convergence of the corresponding
distribution functions:

Fact 1.4.3. Let {Fn}∞
n=1 be a sequence of cdfs, and let F be a cdf. Suppose that all these

cdfs are differentiable, and let pn and p be the densities of Fn and F respectively. If
pn(s)→ p(s) for all s ∈ R, then Fn converges weakly to F.

Let {xn}∞
n=1 and x be random variables, where xn ∼ Fn and x ∼ F. We say that

xn converges in distribution to x if Fn converges weakly to F. In symbols, this

convergence is represented by xn
d→ x.
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Fact 1.4.4. Regarding convergence in distribution, the following statements are true:

1. If g : R→ R is continuous and xn
d→ x, then g(xn)

d→ g(x).

2. If xn
p→ x, then xn

d→ x.

3. If α is constant and xn
d→ α, then xn

p→ α.

The next result is sometimes known as Slutsky’s theorem.

Fact 1.4.5. If α is constant, xn
p→ α and yn

d→ y, then xn + yn
d→ α+ y and xnyn

d→ αy.

1.4.2 The Law of Large Numbers

Two of the most important theorems in both probability and statistics are the law
of large numbers and the central limit theorem. In their simplest forms, these theo-
rems deal with averages of independent and identically distributed (IID) sequences.
The law of large numbers tells us that these averages converge in probability to the
mean of the distribution in question. The central limit theorem tells us that a simple
transform of the average converges to a normal distribution.

Let’s start with the law of large numbers, which relates to the sample mean

x̄N :=
1
N

N

∑
n=1

xn

of a given sample x1, . . . , xN

Theorem 1.4.1. Let {xn} be an IID sequence of random variables with common distribution
F. If the first moment

∫
|s|F(ds) is finite, then

x̄N
p→ E [xn] =

∫
sF(ds) as N → ∞ (1.26)

To prove theorem 1.4.1, we can use fact 1.4.2 on page 31. In view of this fact, it
suffices to show that E [x̄N] →

∫
sF(ds) and var[x̄N] → 0 as N → ∞. These steps

are left as an exercise (exercise 1.5.31). When you do the exercise, note to yourself
exactly where independence bites.12

12The proof involves a bit of cheating, because it assumes that the variance of each xn is finite. This
second moment assumption is not necessary for the result, but it helps to simplify the proof.
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Example 1.4.4. To illustrate the law of large numbers, consider flipping a coin until
10 heads have occurred. The coin is not fair: The probability of heads is 0.4. Let x
be the number of tails observed in the process. It is known that such an x has the
negative binomial distribution, and, with a little bit of googling, we find that the
mean E [x] is 15. This means that if we simulate many observations of x and take
the sample mean, we should get a value close to 15. Code to do this is provided in
listing 1. Can you see how this program works?13 An improved implementation
is given in listing 2. The generation of a single observation has been wrapped in a
function called f. To generate multiple observations, we have used the R function
replicate, which is handy for simulations.

Listing 1 Illustrates the LLN

num.repetitions <- 10000

outcomes <- numeric(num.repetitions)

for (i in 1:num.repetitions) {

num.tails <- 0

num.heads <- 0

while (num.heads < 10) {

b <- runif (1)

num.heads <- num.heads + (b < 0.4)

num.tails <- num.tails + (b >= 0.4)

}

outcomes[i] <- num.tails

}

print(mean(outcomes))

At first glance, the law of large numbers (1.26) appears to only be a statement about
the sample mean, but actually it can be applied to functions of the random variable
as well. For example, if h : R→ R is such that

∫
|h(s)|F(ds) is finite, then

1
N

N

∑
n=1

h(xn)
p→ E [h(xn)] =

∫
h(s)F(ds) (1.27)

This can be confirmed by letting yn := h(xn) and then applying theorem 1.4.1.

13Hint: If u is uniform on [0, 1] and q ∈ [0, 1], then P{u ≤ q} = q. This fact is used to simulate the
coin flips. Also recall that the logical values TRUE and FALSE are treated as 1 and 0 respectively in
algebraic expressions.
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Listing 2 Second version of listing 1

f <- function(q) {

num.tails <- 0

num.heads <- 0

while (num.heads < 10) {

b <- runif (1)

num.heads <- num.heads + (b < q)

num.tails <- num.tails + (b >= q)

}

return(num.tails)

}

outcomes <- replicate (10000 , f(0.4))

print(mean(outcomes))

Also, the law of large numbers applies to probabilities as well as expectations. To
see this, let x ∼ F, fix B ⊂ R, and consider the probability P{x ∈ B}. Let h be
the function defined by h(s) = 1{s ∈ B} for all s ∈ R. Using the principle that
expectations of indicator functions equal probabilities of events (page 14), we have

E [h(x)] = E [1{x ∈ B}] = P{x ∈ B}

It now follows from (1.27) that if {xn} is an IID sample from F, then

1
N

N

∑
n=1

1{xn ∈ B} p→ P{xn ∈ B} (1.28)

The left hand side is the fraction of the sample that falls in the set B, and (1.28) tells
us that this fraction converges to the probability that xn ∈ B.

1.4.3 The Central Limit Theorem

The central limit theorem is another classical result from probability theory. It is
arguably one of the most beautiful and important results in all of mathematics. Rel-
ative to the LLN, it requires an additional second moment condition.

Theorem 1.4.2. Assume the conditions of theorem 1.4.1. If, in addition, the second moment∫
s2F(ds) is finite, then

√
N(x̄N − µ)

d→ y ∼ N (0, σ2) as N → ∞ (1.29)
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where µ :=
∫

sF(ds) = E [xn] and σ2 :=
∫
(s− µ)2F(ds) = var[xn].

Another common statement of the central limit theorem is as follows: If all the con-
ditions of theorem 1.4.2 are satisfied, then

zN :=
√

N
{

x̄N − µ

σ

}
d→ z ∼ N (0, 1) as N → ∞ (1.30)

Exercise 1.5.32 asks you to confirm this via theorem 1.4.2 and fact 1.4.4.

The central limit theorem tells us about the distribution of the sample mean when
N is large. Arguing informally, for N large we have

√
N(x̄N − µ) ≈ y ∼ N (0, σ2)

∴ x̄N ≈
y√
N

+ µ ∼ N
(

µ,
σ2

N

)
Here ≈ means that the distributions are approximately equal. We see that x̄N is
approximately normal, with mean equal to µ := E [x1] and variance converging to
zero at a rate proportional to 1/N.

The convergence in (1.30) is illustrated by listing 3, the output of which is given
in figure 1.9. The listing generates 5,000 observations of the random variable zN
defined in (1.30), where each xn is χ2(5). (The mean of this distribution is 5, and the
variance is 2× 5 = 10.) The observations of zN are stored in the vector outcomes,
and then histogrammed. The last line of the listing superimposes the density of the
standard normal distribution over the histogram. As expected, the fit is pretty good.

Before finishing this section, we briefly note the following extension to the central
limit theorem:

Theorem 1.4.3. Assume the conditions of theorem 1.4.2. If g : R → R is differentiable at
µ and g′(µ) 6= 0, then

√
N{g(x̄N)− g(µ)} d→ N (0, g′(µ)2σ2) as N → ∞ (1.31)

This theorem is used frequently in statistics, to obtain the asymptotic distribution of
certain kinds estimators. The technique is referred to as the delta method. The proof
of theorem 1.4.3 is based on Taylor expansion of g around the point µ. Some of the
details are given in exercise 1.5.39. One word of warning when applying this theo-
rem: In many situations, a rather large value of N is required for the convergence in
(1.31) to occur.
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Listing 3 Illustrates the CLT

num.replications <- 5000

outcomes <- numeric(num.replications)

N <- 1000

k <- 5 # Degrees of freedom

for (i in 1:num.replications) {

xvec <- rchisq(N, k)

outcomes[i] <- sqrt(N / (2 * k)) * (mean(xvec) - k)

}

hist(outcomes , breaks =50, freq=FALSE)

curve(dnorm , add=TRUE , lw=2, col="blue")

Histogram of outcomes
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Figure 1.9: Illustration of the CLT
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1.5 Exercises

Ex. 1.5.1. Suppose that P is a probability on (Ω,F ), so that P(A ∪ B) = P(A) +

P(B) whenever A and B are disjoint. Show that if A, B and C are disjoint, then
P(A ∪ B ∪ C) = P(A) +P(B) +P(C).

Ex. 1.5.2. Prove fact 1.1.2: P(A ∪ B) = P(A) +P(B)−P(A ∩ B) for any A, B.14

Ex. 1.5.3. Given sample space Ω := {1, 2, 3}, let A := {1}, B := {2} and C := {3}.
Let P(A) = P(B) = 1/3. Compute P(C), P(A ∪ B), P(A ∩ B), P(Ac), P(Ac ∪ Bc)

and P(A | B). Are A and C independent?

Ex. 1.5.4. A dice is designed so that the probability of getting face m is qm, where
m ∈ {1, . . . , 6} and q is a constant. Compute q.

Ex. 1.5.5. Let Ω be a nonempty finite set, and let ω0 be a fixed element of Ω. For
each A ⊂ Ω, define P(A) := 1{ω0 ∈ A}. Is P a probability on Ω? Why or why not?

Ex. 1.5.6. Let Ω be any sample space, and letP be a probability on the subsetsF . Let
A ∈ F . Show that if P(A) = 0 or P(A) = 1, then A is independent of every other
event in F . Show that if A is independent of itself, then either P(A) = 0 or P(A) =

1. Show that if A and B are independent, then Ac and Bc are also independent.

Ex. 1.5.7. Let P and Ω be defined as in example 1.1.5. Show that P is additive, in
the sense that if A and B are disjoint events, then P(A ∪ B) = P(A) +P(B).

Ex. 1.5.8. Let P and Ω be defined as in example 1.1.5. Let A be the event that the
first switch is on, and let B be the event that the second switch is on. Show that A
and B are independent under P.

Ex. 1.5.9. Show that when Ω is finite, a random variable x on Ω can only take on a
finite set of values (i.e., has finite range).15

Ex. 1.5.10. Recall Fx defined in (1.11). We claimed that Fx is a cdf, which implies that
lims→∞ Fx(s) = 1. Verify this when x is the finite-valued random variable in (1.4).

Ex. 1.5.11. Recall Fx defined in (1.11). Suppose that x is the finite-valued random
variable in (1.4). Show that lims→−∞ Fx(s) = 0. If you can, show that F is right-
continuous.

14Hint: Sketching the Venn diagram, convince yourself that A = [(A ∪ B) \ B] ∪ (A ∩ B). Finish
the proof using the definition of a probability and fact 1.1.1 (page 5).

15Hint: Have a look at the definition of a function in §13.1.1.
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Ex. 1.5.12. Prove the claim in fact 1.2.2 on page 17.

Ex. 1.5.13. Let x be a discrete random variable taking values s1, . . . , sJ , and let pj :=
P{x = sj}. Show that 0 ≤ pj ≤ 1 for each j, and ∑J

j=1 pj = 1.

Ex. 1.5.14. This exercise describes the inverse transform method for generating
random variables with arbitrary distribution from uniform random variables. The
uniform cdf on [0, 1] is given by F(s) = 0 if s < 0, F(s) = s if 0 ≤ s ≤ 1, and F(s) = 1
if s > 1. Let G be another cdf on R. Suppose that G is strictly increasing, and let
G−1 be the inverse (quantile). Show that if u ∼ F, then G−1(u) ∼ G.

Ex. 1.5.15. Let x ∼ F where F is the uniform cdf on [0, 1]. Give an expression for the
cdf G of the random variable y = x2.

Ex. 1.5.16. Let y ∼ F, where F is a cdf. Show that F(s) = E [1{y ≤ s}] for any s.

Ex. 1.5.17. Confirm monotonicity of expectations (fact 1.1.6 on page 14) for the spe-
cial case where x and y are the random variables in (1.9).

Ex. 1.5.18. Prove fact 1.3.8. (Existence of k-th moment implies existence of j-th mo-
ment for all j ≤ k.)

Ex. 1.5.19. Confirm the expression for variance of linear combinations in fact 1.3.9.

Ex. 1.5.20. Let x and y be scalar random variables. With reference to fact 1.3.10 on
page 29, is it true that corr[αx, βy] = corr[x, y] for any constant scalars α and β? Why
or why not?

Ex. 1.5.21. Confirm the claim in fact 1.3.11: If x and y are independent, then cov[x, y] =
corr[x, y] = 0.

Ex. 1.5.22. Let x1 and x2 be random variables with densities p1 and p2. Let q be their
joint density. Show that x1 and x2 are independent whenever q(s, s′) = p1(s)p2(s′)
for every s, s′ ∈ R.

Ex. 1.5.23. Fact 1.3.2 tells us that if x and y are independent random variables and g
and f are any two functions, then f (x) and g(y) are independent. Prove this for the
case where f (x) = 2x and g(y) = 3y− 1.

Ex. 1.5.24. Let x and y be independent uniform random variables on [0, 1]. Let
z := max{x, y}. Compute the cdf, density and mean of z.16 In addition, compute
the cdf of w := min{x, y}.

16Hint: Fix s ∈ R and compare the sets {z ≤ s} and {x ≤ s} ∩ {y ≤ s}. What is the relationship
between these two sets?
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Ex. 1.5.25. Confirm the solutions in (1.24).

Ex. 1.5.26. Consider the setting of §1.3.4. Let α∗, β∗ and `∗ be as defined there. Let
the prediction error u be defined as u := y− `∗(x). Show that

1. E [`∗(x)] = E [y]

2. var[`∗(x)] = corr[x, y]2 var[y]

3. var[u] = (1− corr[x, y]2) var[y]

Ex. 1.5.27. Continuing on from exercise 1.5.26, show that cov[`∗(x), u] = 0.

Ex. 1.5.28. Let {xn} be a sequence of random variables satisfying xn = y for all n,
where y is a single random variable. Show that if P{y = −1} = P{y = 1} = 0.5,
then xn

p→ 0 fails. Show that if P{y = 0} = 1, then xn
p→ 0 holds.

Ex. 1.5.29. Prove Chebychev’s inequality (1.25). In particular, show that if x is a

random variable with finite second moment and δ > 0, then P{|x| ≥ δ} ≤ E [x2]
δ2 .

Ex. 1.5.30. We saw in fact 1.4.4 that if xn
p→ x, then xn

d→ x. Show that the converse
is not generally true. In other words, give an example of a sequence of random
variables {xn} and random variable x such that xn converges to x in distribution,
but not in probability.

Ex. 1.5.31. In this exercise, we complete the proof of the LLN on page 34. Let {xn}
be an IID sequence of random variables with common distribution F. Show that
E [x̄N]→

∫
sF(ds) and var[x̄N]→ 0 as N → ∞.

Ex. 1.5.32. Confirm (1.30) via theorem 1.4.2 and fact 1.4.4.

Ex. 1.5.33 (Computational). Provided that we can at least generate uniform random
variables, the inverse transform method (see exercise 1.5.14) can be (and is) used to
generate random variables with arbitrary distribution G. Pick three different contin-
uous distributions G1, G2 and G3 available in R. Using Q-Q plots,17 examine for each
Gi whether the random variables generated via inverse transform do appear equally
distributed to the random variables generated from Gi using R’s built in algorithms
(accessed through rname, where name is one of norm, lnorm, etc.).

Ex. 1.5.34 (Computational). Using numerical integration, show that the 8th moment
of the standard normal density is approximately 105.

17Look them up if you don’t know what they are. In R, see the documentation on qqplot.
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Ex. 1.5.35 (Computational). Using numerical integration and a for loop, compute
the first 10 moments of the exponential distribution with mean 1. (The exponential
distribution has one parameter. If the mean is 1, the value of the parameter is pinned
down to what value?)

Ex. 1.5.36 (Computational). Using a for loop, plot the chi-squared density for k =

1, 2, 3, 4, 5, all on the same figure. Use different colors for different k, and include a
legend.

Ex. 1.5.37 (Computational). Replicate the simulation performed in listing 3, but this
time for N = 2. Why is the fit not as good?

Ex. 1.5.38 (Computational). Replicate the simulation performed in listing 3, but this
time for uniformly distributed random variables on [−1, 1]. Compare histograms
and normal density plots in the manner of figure 1.9. Use the appropriate mean
and variance in the normal density. Produce plots for N = 1, N = 2, N = 5 and
N = 200.

Ex. 1.5.39. This exercise covers some of the proof behind theorem 1.4.3 on page 37.
Suppose that {tn} is a sequence of random variables, θ is a constant, and

√
n(tn − θ)

d→ N (0, σ2) as n→ ∞

Let g : R → R be differentiable at θ with g′(θ) 6= 0. Taking a first order Taylor
expansion of g around θ, we can write g(tn) = g(θ) + g′(θ)(tn − θ) + R(tn − θ),
where R(tn − θ) is a remainder term. It turns out that under these conditions we
have

√
nR(tn − θ)

p→ 0. The details are omitted. Using this fact, prove carefully that
√

n{g(tn)− g(θ)} d→ N (0, g′(θ)2σ2).

1.5.1 Solutions to Selected Exercises

Solution to Exercise 1.5.1. If A, B and C are disjoint, then A ∪ B and C are also
disjoint, and A ∪ B ∪ C = (A ∪ B) ∪ C. As a result, using additivity over pairs,

P(A ∪ B ∪ C) = P((A ∪ B) ∪ C) = P(A ∪ B) +P(C) = P(A) +P(B) +P(C)

This result can be extended to an arbitrary number of sets by using induction.
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Solution to Exercise 1.5.2. Pick any sets A, B ∈ F . To show that

P(A ∪ B) = P(A) +P(B)−P(A ∩ B)

we start by decomposing A into the union of two disjoint sets: A = [(A ∪ B) \ B] ∪
(A ∩ B). Using additivity of P, we then have

P(A) = P[(A ∪ B) \ B] +P(A ∩ B)

Since B ⊂ (A ∪ B), we can apply part 1 of fact 1.1.1 (page 5) to obtain

P(A) = P(A ∪ B)−P(B) +P(A ∩ B)

Rearranging this expression gives the result that we are seeking.

Solution to Exercise 1.5.3. First, P(C) = 1/3 as 1 = P(Ω) = P(A ∪ B ∪ C) =

P(A) + P(B) + P(C) = 1/3 + 1/3 + P(C), and hence P(C) = 1/3. In addition,
P(A ∪ B) = 2/3, P(A ∩ B) = 0, P(Ac) = 2/3, P(Ac ∪ Bc) = P((A ∩ B)c) =

P(Ω) = 1, and P(A ∩ C) = 0 6= 1/9 = P(A)P(C). Therefore A is not independent
of C.

Solution to Exercise 1.5.4. When the dice is rolled one face must come up, so the
sum of the probabilities is one. More formally, letting Ω = {1, . . . , 6} be the sample
space, we have

P{1, . . . , 6} = P∪6
m=1 {m} =

6

∑
m=1

P{m} =
6

∑
m=1

qm = 1

Solving the last equality for q, we get q = 1/21.

Solution to Exercise 1.5.5. To show that P is a probability on Ω we need to check
that

1. 1{ω0 ∈ A} ∈ [0, 1] for every A ⊂ Ω.

2. 1{ω0 ∈ Ω} = 1

3. If A ∩ B = ∅, then 1{ω0 ∈ A ∪ B} = 1{ω0 ∈ A}+ 1{ω0 ∈ B}

JOHN STACHURSKI January 10, 2014



1.5. EXERCISES 44

1 is immediate from the definition of an indicator function. 2 holds because ω0 ∈ Ω.
Regarding 3, pick any disjoint A and B. If ω0 ∈ A, then ω0 /∈ B, and we have

1{ω0 ∈ A ∪ B} = 1 = 1{ω0 ∈ A}+ 1{ω0 ∈ B}

If ω0 ∈ B, then ω0 /∈ A, and once again we have

1{ω0 ∈ A ∪ B} = 1 = 1{ω0 ∈ A}+ 1{ω0 ∈ B}

Finally, if ω0 is in neither A nor B, then

1{ω0 ∈ A ∪ B} = 0 = 1{ω0 ∈ A}+ 1{ω0 ∈ B}

We have shown that 1–3 hold, and hence P is a probability on Ω.

Solution to Exercise 1.5.6. Suppose that P(A) = 0 and that B ∈ F . We claim that
P(A ∩ B) = P(A)P(B), or, in this case, P(A ∩ B) = 0. Using nonnegativity and
monotonicity of P (fact 1.1.1), we obtain

0 ≤ P(A ∩ B) ≤ P(A) = 0

Therefore P(A ∩ B) = 0 as claimed.

Now suppose that P(A) = 1. We claim that P(A ∩ B) = P(A)P(B), or, in this case,
P(A ∩ B) = P(B). In view of fact 1.1.2 on page 6, we have

P(A ∩ B) = P(A) +P(B)−P(A ∪ B)

Since P(A) = 1, it suffices to show that P(A ∪ B) = 1. This last equality is implied
by monotonicity of P, because 1 = P(A) ≤ P(A ∪ B) ≤ 1.

Next, suppose that A is independent of itself. ThenP(A) = P(A∩A) = P(A)P(A) =

P(A)2. If a = a2, then either a = 0 or a = 1.

Finally, let A and B be independent. We have

P(Ac ∩ Bc) = P((A ∪ B)c) = 1−P(A ∪ B)

Applying fact 1.1.2 and independence, we can transform the right-hand side to ob-
tain

P(Ac ∩ Bc) = (1−P(A))(1−P(B)) = P(Ac)P(Bc)

In other words, Ac and Bc are independent.
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Solution to Exercise 1.5.7. The proof is almost identical to the proof of additivity in
example 1.1.4 (page 4).

Solution to Exercise 1.5.8. The proof of independence is essentially the same as the
proof of independence of A and B in example 1.1.6 (page 6).

Solution to Exercise 1.5.10. We are assuming that x has finite range, and hence takes
only finitely many different values. Let m be the largest such value. For this m, we
have

lim
s→∞

Fx(s) ≥ Fx(m) = P{ω ∈ Ω : x(ω) ≤ m} = P(Ω) = 1

(The inequality is due to the fact that Fx is increasing.) On the other hand,

lim
s→∞

Fx(s) = lim
s→∞

P{x ≤ s} ≤ lim
s→∞

P(Ω) = 1

From these two inequalities we get 1 ≤ lims→∞ Fx(s) ≤ 1, which is equivalent to
lims→∞ Fx(s) = 1.

Solution to Exercise 1.5.12. Fix s ≥ 0. Using additivity over disjoint sets, we have

F|x|(s) := P{|x| ≤ s} = P{−s ≤ x ≤ s} = P{x = −s}+P{−s < x ≤ s}

By assumption, P{x = −s} = 0. Applying fact 1.2.1 on page 17 then yields

F|x|(s) = P{−s < x ≤ s} = F(s)− F(−s)

The claim F|x|(s) = 2F(s)− 1 now follows from the definition of symmetry.

Solution to Exercise 1.5.13. That 0 ≤ pj ≤ 1 for each j follows immediately from
the definition of P. In addition, using additivity of P, we have

J

∑
j=1

pj =
J

∑
j=1
P{x = sj} = P∪J

j=1 {x = sj} = P(Ω) = 1 (1.32)

(We are using the fact that the sets {x = sj} disjoint. Why is this always true? Look
carefully at the definition of a function given in §13.1.1.)

Solution to Exercise 1.5.14. Let z := G−1(u). We want to show that z ∼ G. Since G
is monotone increasing we have G(a) ≤ G(b) whenever a ≤ b. As a result, for any
s ∈ R,

P{z ≤ s} = P{G−1(u) ≤ s} = P{G(G−1(u)) ≤ G(s)} = P{u ≤ G(s)} = G(s)

We have shown that z ∼ G as claimed.
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Solution to Exercise 1.5.15. Evidently G(s) = 0 when s < 0. For s ≥ 0 we have

P{x2 ≤ s} = P{|x| ≤
√

s} = P{x ≤
√

s} = F(
√

s)

Thus, G(s) = F(
√

s)1{s ≥ 0}.

Solution to Exercise 1.5.17. If x(ω) := 1{ω ∈ A} ≤ 1{ω ∈ B} =: y(ω) for any
ω ∈ Ω, then A ⊂ B. (If ω ∈ A, then x(ω) = 1. Since x(ω) ≤ y(ω) ≤ 1, we then
have y(ω) = 1, and hence ω ∈ B.) Using (1.8) and monotonicity of P, we then have

E [x] = E [1{ω ∈ A}] = P(A) ≤ P(B) = E [1{ω ∈ B}] = E [y]

as was to be shown.

Solution to Exercise 1.5.18. Let a be any nonnegative number, and let j ≤ k. If a ≥
1, then aj ≤ ak. If a < 1, then aj ≤ 1. Thus, for any a ≥ 0, we have aj ≤ ak + 1, and for
any random variable x we have |x|j ≤ |x|k + 1. Using monotonicity of expectations
(fact 1.1.6 on page 14) and E [1] = 1, we then have E [|x|j] ≤ E [|xk|] + 1. Hence the
j-th moment exists whenever the k-th moment exists.

Solution to Exercise 1.5.23. Let u := f (x) = 2x and v := g(y) = 3y − 1, where
x and y are independent. Independence of u and v can be confirmed via (1.22) on
page 26. Fixing s1 and s2 in R, we have

P{u ≤ s1, v ≤ s2} = P{x ≤ s1/2, y ≤ (s2 + 1)/3}
= P{x ≤ s1/2}P{y ≤ (s2 + 1)/3} = P{u ≤ s1}P{v ≤ s2}

Thus u and v are independent as claimed.

Solution to Exercise 1.5.24. As in the statement of the exercise, x and y are indepen-
dent uniform random variables on [0, 1], z := max{x, y} and w := min{x, y}. As
a first step to the proofs, you should convince yourself that if a, b and c are three
numbers, then

• max{a, b} ≤ c if and only if a ≤ c and b ≤ c

• min{a, b} ≤ c if and only if a ≤ c or b ≤ c

Using these facts, next convince yourself that, for any s ∈ R,
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• {z ≤ s} = {x ≤ s} ∩ {y ≤ s}

• {w ≤ s} = {x ≤ s} ∪ {y ≤ s}

(For each, equality, show that if ω is in the right-hand side, then ω is in the left-hand
side, and vice versa.) Now, for s ∈ [0, 1], we have

P{z ≤ s} = P[{x ≤ s} ∩ {y ≤ s}] = P{x ≤ s}P{y ≤ s} = s2

By differentiating we get the density p(s) = 2s, and by integrating
∫ 1

0 sp(s)ds we get
E [z] = 2/3. Finally, regarding the cdf of w, for s ∈ [0, 1] we have

P{w ≤ s} = P[{x ≤ s} ∪ {y ≤ s}]
= P{x ≤ s}+P{y ≤ s} −P[{x ≤ s} ∩ {y ≤ s}]

Hence P{w ≤ s} = 2s− s2.

Solution to Exercise 1.5.27. Using y = `∗(x)+u and the results form exercise 1.5.26,
we have

var[`∗(x) + u] = var[y]

= corr[x, y]2 var[y] + (1− corr[x, y]2) var[y]

= var[`∗(x)] + var[u]

It follows (why?) that cov[`∗(x), u] = 0 as claimed.

Solution to Exercise 1.5.28. From the definition of convergence in probability (see
§1.4.1), the statement xn

p→ 0 means that, given any δ > 0, we have P{|xn| > δ} →
0. Consider first the case where P{y = −1} = P{y = 1} = 0.5. Take δ = 0.5. Then,
since xn = y for all n,

P{|xn| > δ} = P{|y| > 0.5} = 1

Thus, the sequence does not converge to zero. Hence xn
p→ 0 fails. On the other

hand, if P{y = 0} = 1, then for any δ > 0 we have

P{|xn| > δ} = P{|y| > δ} = 0

This sequence does converge to zero (in fact it’s constant at zero), and xn
p→ 0 holds.
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Solution to Exercise 1.5.29. Pick any random variable x and δ > 0. By considering
what happens at an arbitrary ω ∈ Ω, you should be able to convince yourself that

x2 = 1{|x| ≥ δ}x2 + 1{|x| < δ}x2 ≥ 1{|x| ≥ δ}δ2

Using fact 1.1.6 (page 14), fact 1.1.3 (page 14) and rearranging completes the proof

that P{|x| ≥ δ} ≤ E [x2]
δ2 .

Solution to Exercise 1.5.30. We want to give an example of a sequence of random
variables {xn} and random variable x such that xn converges to x in distribution,
but not in probability. Many examples can be found by using IID sequences. For
example, if {xn}∞

n=1 and x are IID standard normal random variables, then xn and
x have the same distribution for all n, and hence xn converges in distribution to x.
However, zn := xn − x has distribution N (0, 2) for all n. Letting z be any random
variable with distribution N (0, 2) and δ be any strictly positive constant, we have
P{|xn − x| ≥ δ} = P{|z| ≥ δ} > 0. Thus, P{|xn − x| ≥ δ} does not converge to
zero.

Solution to Exercise 1.5.31. By linearity of expectations,

E [x̄N] =
1
N

N

∑
n=1

E [xn] =
N
N

∫
sF(ds) =

∫
sF(ds)

This confirms thatE [x̄N]→
∫

sF(ds) as claimed. To see that var[x̄N]→ 0 as N → ∞,
let σ2 be the common variance of each xn. Using fact 1.3.9, we obtain

var

[
1
N

N

∑
n=1

xn

]
=

1
N2

N

∑
n=1

σ2 +
2

N2 ∑
n<m

cov[xn, xm]

By independence, this reduces to var[x̄N] = σ2/N, which converges to zero.
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Chapter 2

Linear Algebra

The first part of this chapter is mainly about solving systems of linear equations,
while the second deals with random matrices. We start our story from the begin-
ning, with the notions vectors and matrices.

2.1 Vectors and Matrices

[roadmap]

2.1.1 Vectors

An important set for us will be, for arbitrary N ∈ N, the set of all N-vectors, or
vectors of length N. This set is denoted by RN, and a typical element is of the form

x =


x1

x2
...

xN

 where xn ∈ R for each n

Here x has been written vertically, as a column of numbers. We could also write
x horizontally, like so: x = (x1, . . . , xN). At this stage, we are viewing vectors just
as sequences of numbers, so it makes no difference whether they are written ver-
tically or horizontally. Later, when we come to deal with matrix algebra, we will
distinguish between column (vertical) and row (horizontal) vectors.

49
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The vector of ones will be denoted 1, while the vector of zeros will be denoted 0:

1 :=

 1
...
1

 0 :=

 0
...
0


For elements of RN there are two fundamental algebraic operations: addition and
scalar multiplication. If x ∈ RN and y ∈ RN, then the sum is defined by

x + y :=:


x1

x2
...

xN

+


y1

y2
...

yN

 :=


x1 + y1

x2 + y2
...

xN + yN


If α ∈ R, then the scalar product of α and x is defined to be

αx :=


αx1

αx2
...

αxN


Thus, addition and scalar multiplication are defined in terms of ordinary addition
and multiplication in R, and computed element-by-element, by adding and multi-
plying respectively. Figures 2.1 and 2.1 show examples of vector addition and scalar
multiplication in the case N = 2. In the figure, vectors are represented as arrows,
starting at the origin and ending at the location in R2 defined by the vector.

We have defined addition and scalar multiplication of vectors, but not subtraction.
Subtraction is performed element by element, analogous to addition. The definition
can be given in terms of addition and scalar multiplication. x− y := x + (−1)y. An
illustration of this operation is given in figure 2.3. The way to remember this is to
draw a line from y to x, and then shift it to the origin.

The inner product of two vectors x and y in RN is denoted by x′y, and defined as
the sum of the products of their elements:

x′y :=
N

∑
n=1

xnyn = y′x

The (euclidean) norm of a vector x ∈ RN is defined as

‖x‖ :=
√

x′x :=

(
N

∑
n=1

x2
n

)1/2

(2.1)
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Figure 2.1: Vector addition

Figure 2.2: Scalar multiplication
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Figure 2.3: Difference between vectors

and represents the length of the vector x. (In the arrow representation of vectors in
figures 2.1–2.3, the norm of the vector is equal to the length of the arrow.)

Fact 2.1.1. For any α ∈ R and any x, y ∈ RN, the following properties are satisfied
by the norm:

1. ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0.

2. ‖αx‖ = |α|‖x‖.

3. ‖x + y‖ ≤ ‖x‖+ ‖y‖.

4. |x′y| ≤ ‖x‖‖y‖.

The third property is called the triangle inequality, while the fourth is called the
Cauchy-Schwartz inequality.

Given two vectors x and y, the value ‖x − y‖ has the interpretation of being the
“distance” between these points. To see why, consult figure 2.3 again.
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2.1.2 Matrices

A N×K matrix is a rectangular array A of real numbers with N rows and K columns,
written in the following way:

A =


a11 a12 · · · a1K
a21 a22 · · · a2K
...

...
...

aN1 aN2 · · · aNK


Often, the values ank in the matrix represent coefficients in a system of linear equa-
tions, such as

a11x1 + a12x2 + · · ·+ a1KxK = b1

a21x1 + a22x2 + · · ·+ a2KxK = b2
...

aN1x1 + aN2x2 + · · ·+ aNKxK = bN

We’ll explore this relationship further after some more definitions.

In matrix A, the symbol ank stands for the element in the n-th row of the k-th column.
For obvious reasons, the matrix A is also called a vector if either N = 1 or K = 1. In
the former case, A is called a row vector, while in the latter case it is called a column
vector. If A is N × K and N = K, then A is called square. If, in addition ank = akn
for every k and n, then A is called symmetric.

When convenient, we will use the notation rown(A) to refer to the n-th row of A,
and colk(A) to refer to it’s k-th column.

For a square matrix A, the N elements of the form ann for n = 1, . . . , N are called the
principal diagonal: 

a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
...

aN1 aN2 · · · aNN


A is called diagonal if the only nonzero entries are on the principal diagonal.

(Clearly every diagonal matrix is symmetric.) If, in addition to being diagonal, each
element ann along the principal diagonal is equal to 1, then A is called the identity
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matrix, and denoted by I:

I :=


1 0 · · · 0
0 1 · · · 0
...

...
...

0 0 · · · 1


Just as was the case for vectors, a number of algebraic operations are defined for
matrices. The first two, scalar multiplication and addition, are immediate general-
izations of the vector case: For γ ∈ R, we let

γ


a11 a12 · · · a1K
a21 a22 · · · a2K
...

...
...

aN1 aN2 · · · aNK

 :=


γa11 γa12 · · · γa1K
γa21 γa22 · · · γa2K

...
...

...
γaN1 γaN2 · · · γaNK


while

a11 · · · a1K
a21 · · · a2K
...

...
...

aN1 · · · aNK

+


b11 · · · b1K
b21 · · · b2K
...

...
...

bN1 · · · bNK

 :=


a11 + b11 · · · a1K + b1K
a21 + b21 · · · a2K + b2K

...
...

...
aN1 + bN1 · · · aNK + bNK


In the latter case, the matrices have to have the same number of rows and columns
in order for the definition to make sense.

Now let’s look at multiplication of matrices. If A and B are two matrices, then their
product AB is formed by taking as it’s i, j-th element the inner product of the i-th
row of A and the j-th column of B. For example, consider the following product.

a11 · · · a1K
a21 · · · a2K
...

...
...

aN1 · · · aNK




b11 · · · b1J
b21 · · · b2J
...

...
...

bK1 · · · bKJ

 =


c11 · · · c1J
c21 · · · c2J
...

...
...

cN1 · · · cNJ


Here c11 is computed as

c11 = row1(A)′ col1(B) =
K

∑
k=1

a1kbk1

There are many good tutorials for multiplying matrices on the web (try Wikipedia,
for example), so I’ll leave it to you to get a feeling for this operation.
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Since inner products are only defined for vectors of equal length, this requires that
the length of the rows of A is equal to the length of the columns of B. Put differently,
the number of columns of A is equal to the number of rows of B. In other words,
if A is N × K and B is J × M, then we require K = J. The resulting matrix AB is
N ×M. Here’s the rule to remember:

product of N × K and K×M is N ×M

From the definition, it is clear that multiplication is not commutative, in that AB and
BA are not generally the same thing. Indeed BA is not well-defined unless N = M
also holds. Even in this case, the two are not generally equal.

Other than that, multiplication behaves pretty much as we’d expect. In particular,
for conformable matrices A, B and C, we have

• A(BC) = (AB)C

• A(B + C) = AB + AC

• (A + B)C = AC + BC

(Here, we are using the word “conformable” to indicate dimensions are such that
the operation in question makes sense. For example, we’ll say “for two conformable
matrices A and B, the product AB satisfies xyz” if the dimensions of A and B are
such that the product is well defined; and similarly for addition, etc.)

2.1.3 Linear Functions

One way to view matrices is as objects representing coefficients in linear systems
of equations. Another way to view matrices is as functions, or mappings from one
space to another. We will see that these two perspectives are very closely related.
Let’s begin with a definition: A function f : RN → RM is called linear if

f (αx + βy) = α f (x) + β f (y) for any x, y ∈ RN and α, β ∈ R

Example 2.1.1. The function f : R → R defined by f (x) = x2 is nonlinear, because
if we take α = β = x = y = 1, then f (αx + βy) = f (2) = 4, while α f (x) + β f (y) =
1 + 1 = 2.

JOHN STACHURSKI January 10, 2014



2.1. VECTORS AND MATRICES 56

Example 2.1.2. The function f : R→ R defined by f (x) = 2x is linear, because if we
take any α, β, x, y in R, then

f (αx + βy) = 2(αx + βy) = α2x + β2y = α f (x) + β f (y)

Example 2.1.3. The affine function f : R→ R defined by f (x) = 1 + 2x is nonlinear,
because if we take α = β = x = y = 1, then f (αx + βy) = f (2) = 5, while
α f (x) + β f (y) = 3 + 3 = 6.

Now let’s return to matrices. When we think of an N×K matrix A as a mapping, we
are considering the operation of sending a vector x ∈ RK into a new vector y = Ax
in RN. In this sense, A defines a function from RK to RN. Among the collection
of all functions from RK to RN, these functions defined by matrices have a special
property: they are all linear. Moreover, it turns out that the functions defined by
matrices are the only linear functions. In other words, the set of linear functions
from RK to RN and the set of N × K matrices are essentially the same thing.

Let’s look at some of the details. Take a fixed N × K matrix A and consider the
function f : RK → RN defined by f (x) = Ax. To see that f is a linear function, pick
any x, y in RK, and any scalars α and β. The rules of matrix addition and scalar
multiplication tell us that

f (αx + βy) := A(αx + βy) = Aαx + Aβy = αAx + βAy =: α f (x) + β f (y)

In other words, f is linear.

How about some more examples of a linear functions, to help you grasp the intu-
ition? As I mentioned just above, I can’t give you any more examples because there
aren’t any more. The next theorem states this result.

Theorem 2.1.1. If A is an N× K matrix and f : RK → RN is defined by f (x) = Ax, then
the function f is linear. Conversely, if f : RK → RN is linear, then there exists an N × K
matrix A such that f (x) = Ax for all x ∈ RK.

The proof of the second part of theorem 2.1.1 is an exercise (exercise 2.6.3).

2.1.4 Maps and Linear Equations

In §2.1.3, we started to think about matrices as maps. That is, given an N×K matrix
A, we can identify A with the function f (x) = Ax. Now let’s think about linear

JOHN STACHURSKI January 10, 2014



2.1. VECTORS AND MATRICES 57

equations. The canonical problem is as follows: Given A and a fixed vector b, we
want to find a vector x such that Ax = b. The best way to think about this is that
we want to invert the mapping f (x) = Ax, because what we want to do is find an
x such that f (x) = b. That is, we want to find f−1(b), the preimage of b under f .
Now if you know anything about inverting functions, you will know that there are
various potential problems here. For one, there may be no x such that f (x) = b.
Secondly, there may be multiple x with f (x) = b. These problems concern existence
and uniqueness of solutions respectively.

Before tackling this problem directly, let’s go back to the general problem of invert-
ing functions in the one-dimensional case, the advantage being that we can graph
the function and gain visual intuition. Consider figure 2.4, which graphs a one-
dimensional function f : [0, 1] → R. The set [0, 1] over which f is defined is called
the domain of f . The red interval is called the range of f , and consists of all y such
that f (x) = y for some x in the domain [0, 1]. More generally, for an arbitrary func-
tion f : X → Y, the range of f is

rng( f ) := {y ∈ Y : f (x) = y for some x ∈ X}

Returning to the problems of existence and uniqueness of solutions, have another
look at the function f in figure 2.4. Evidently, the equation f (x) = b has a solution if
and only if b ∈ rng( f ). In figure 2.5, b falls outside rng( f ) and there is no solution.
The other issue we must consider is uniqueness. Even if the equation f (x) = b has
a solution, the solution may not be unique. Figure 2.6 gives an example. Here both
x1 and x2 solve f (x) = b.

Let’s return now to the matrix setting. Let f (x) = Ax, where A is a given matrix,
and consider the equation Ax = b for some fixed b. When will this equation have
a solution? In view of our preceding discussion, the answer is that there will be a
solution if and only if b is in rng(A) := rng( f ). This is more likely if the range of
f is “large.” One way to check this by looking at something called the rank of A,
which is a measure of the size of its range. In turn, the rank is related to whether or
not the columns of A are linearly independent or not. Conveniently, this last question
turns out to be closely connected to the issue of uniqueness of solutions. To grasp
these ideas takes a bit of effort but is certainly worthwhile. Let’s get started.

JOHN STACHURSKI January 10, 2014



2.1. VECTORS AND MATRICES 58

0 1

b

x

Figure 2.4: Preimage of b under f

0 1

b

Figure 2.5: No solution
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0 1

b

x1 x2

Figure 2.6: Multiple solutions

2.2 Span, Dimension and Independence

Motivated by the preceding discussion, we now introduce the important notions of
linear subspaces, spans, linear independence, basis and dimension.

2.2.1 Spans and Linear Subspaces

Given K vectors x1, . . . , xK in RN, we can form linear combinations, which are vec-
tors of the form

y =
K

∑
k=1

αkxk = α1x1 + · · ·+ αKxK

for some collection α1, . . . , αK of K real numbers.

Fact 2.2.1. Inner products of linear combinations satisfy the following rule:(
K

∑
k=1

αkxk

)′( J

∑
j=1

β jyj

)
=

K

∑
k=1

J

∑
j=1

αkβ jx′kyj
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The set of all linear combinations of X := {x1, . . . , xK} is called the span of X, and
denoted by span(X):

span(X) :=

{
all vectors

K

∑
k=1

αkxk such that α := (α1, . . . , αK) ∈ RK

}

Let Y be any subset of RN, and let X be as above. If Y ⊂ span(X), we say that the
vectors X := {x1, . . . , xK} span the set Y, or that X is a spanning set for Y. This is a
particularly nice situation when Y is large but X is small, because it means that all
the vectors in the large set Y are “described” by the small number of vectors in X.

Example 2.2.1. Let X = {1} = {(1, 1)} ⊂ R2. The span of X is all vectors of the
form (α, α) with α ∈ R. This constitutes a line in the plane. Since we can take α = 0,
it follows that the origin 0 is in span(X). In fact span(X) is the unique line in the
plane that passes through both 0 and the vector 1 = (1, 1).

Example 2.2.2. Consider the vectors {e1, . . . , eN} ⊂ RN, where en has all zeros ex-
cept for a 1 as the n-th element. The case ofR2, where e1 := (1, 0) and e2 := (0, 1), is
illustrated in figure 2.7. The vectors e1, . . . , eN are called the canonical basis vectors
of RN—we’ll see why later on. One reason is that {e1, . . . , eN} spans all of RN. To
see this in the case of N = 2 (check general N yourself), observe that for any y ∈ R2,
we have

y :=
(

y1

y2

)
=

(
y1

0

)
+

(
0
y1

)
= y1

(
1
0

)
+ y2

(
0
1

)
= y1e1 + y2e2

Thus, y ∈ span{e1, e2} as claimed. Since y is just an arbitrary vector in R2, we have
shown that {e1, e2} spans R2.

Example 2.2.3. Consider the set P := {(x1, x2, 0) ∈ R3 : x1, x2 ∈ R}. Graphically,
P corresponds to the flat plane in R3, where the height coordinate is always zero.
If we take e1 = (1, 0, 0) and e2 = (0, 1, 0), then given y = (y1, y2, 0) ∈ P we have
y = y1e1 + y2e2. In other words, any y ∈ P can be expressed as a linear combination
of e1 and e2, and {e1, e2} is a spanning set for P.

Fact 2.2.2. Let X and Y be any two finite subsets of RN. If X ⊂ Y, then we have
span(X) ⊂ span(Y).

One of the key features of the span of a set X is that it is “closed” under the linear
operations of vector addition and scalar multiplication, in the sense that if we take
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Figure 2.7: Canonical basis vectors in R2

elements of the span and combine them using these operations, the resulting vectors
are still in the span. For example, to see that the span is closed under vector addition,
observe that if X = {x1, . . . , xK} and y, z are both in span(X), then we can write
them as

y =
K

∑
k=1

αkxk and z =
K

∑
k=1

βkxk

for a suitable scalars αk, βk ∈ R. It then follows that

y + z =
K

∑
k=1

(αk + βk)xk ∈ span(X)

Hence span(X) is closed under vector addition as claimed. Another easy argument
shows that span(X) is closed under scalar multiplication.

The notion of a set being closed under scalar multiplication and vector addition is
important enough to have its own name: A set S ⊂ RN with this property is called
a linear subspace of RN. More succinctly, a nonempty subset S of RN is called a
linear subspace if, for any x and y in S, and any α and β inR, the linear combination
αx + βy is also in S.

Example 2.2.4. It follows immediately from the proceeding discussion that if X is
any finite nonempty subset ofRN, then span(X) is a linear subspace ofRN. For this
reason, span(X) is often called the linear subspace spanned by X.
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Figure 2.8: The vectors e1 and x

Example 2.2.5. In R3, lines and planes that pass through the origin are linear sub-
spaces. Other linear subspaces of R3 are the singleton set containing the zero ele-
ment 0, and the set R3 itself.

Fact 2.2.3. Let S be a linear subspace of RN. The following statements are true:

1. The origin 0 is an element of S.

2. If X is a finite subset of S, then span(X) ⊂ S.

2.2.2 Linear Independence

In some sense, the span of X := {x1, . . . , xK} is a measure of the “diversity” of the
vectors in X—the more diverse are the elements of X, the greater is the set of vectors
that can be represented as linear combinations of its elements. In fact, if X is not very
diverse, then some “similar” elements may be redundant, in the sense that one can
remove an element xi from the collection X without reducing its span.

Let’s consider two extremes. First consider the vectors e1 := (1, 0) and e2 := (0, 1)
inR2 (figure 2.7). As we saw in example 2.2.2, the span {e1, e2} is all ofR2. With just
these two vectors, we can span the whole plane. In algebraic terms, these vectors
are relatively diverse. We can also see their diversity in the fact that if we remove
one of the vectors from {e1, e2}, the span is no longer all ofR2. In fact it is just a line
in R2. Hence both vectors have their own role to play in forming the span.

Now consider the pair e1 and x := −2e1 = (−2, 0), as shown in figure 2.8. This pair
is not very diverse. In fact, if y ∈ span{e1, x}, then, for some α1 and α2,

y = α1e1 + α2x = α1e1 + α2(−2)e1 = (α1 − 2α2)e1 ∈ span{e1}
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In other words, any element of span{e1, x} is also an element of span{e1}. We can
kick x out of the set {e1, x} without reducing the span.

Let’s translate these ideas into formal definitions. In general, the set of vectors X :=
{x1, . . . , xK} in RN is called linearly dependent if one (or more) vector(s) can be
removed without changing span(X). We call X linearly independent if it is not
linearly dependent.

To see this definition in a slightly different light, suppose that X := {x1, . . . , xK} is
linearly dependent, with

span{x1, . . . , xK} = span{x2, . . . , xK}

Since x1 ∈ span{x1, . . . , xK} certainly holds, this equality implies that

x1 ∈ span{x2, . . . , xK}

Hence, there exist constants α2, . . . , αK with

x1 = α2x2 + · · · αKxK

In other words, x1 can be expressed as a linear combination of the other elements in
X. This is a general rule: Linear dependence means that at least one vector in the
set can be written as a linear combination of the others. Linear independence means
the opposite is true. The following fact clarifies matters further:

Fact 2.2.4 (Definitions of linear independence). The following statements are all
equivalent:

1. The set X := {x1, . . . , xK} is linearly independent.

2. If X0 is a proper subset of X, then span(X0) is a proper subset of span(X).1

3. No vector in X can be written as a linear combination of the others.

4. If ∑K
k=1 αkxk = 0, then α1 = α2 = · · · = αK = 0.

5. If αj 6= 0 for some j, then ∑K
k=1 αkxk 6= 0.

1 A is a proper subset of B if A ⊂ B and A 6= B.
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Part 5 is just the contrapositive of part 4, and hence the two are equivalent. (See §13.3
if you don’t know what a contrapositive is.) The equivalence of part 4 and part 3
might not be immediately obvious, but the connection is clear when you think about
it. To say that (α1, . . . , αK) = 0 whenever ∑K

k=1 αkxk = 0 means precisely that no xk
can be written as a linear combination of the other vectors. For example, if there
does exist some αj 6= 0 with ∑K

k=1 αkxk = 0, then xj = ∑k 6=j(−αk/αj)xk.

Example 2.2.6. The set of canonical basis vectors in example 2.2.2 is linearly inde-
pendent. Indeed, if αj 6= 0 for some j, then ∑K

k=1 αkek = (α1, . . . , αK) 6= 0.

One reason for our interest in the concept of linear independence lies in the follow-
ing problem: We know when a point inRN can be expressed as a linear combination
of some fixed set of vectors X. This is true precisely when that point is in the span
of X. What we do not know is when that representation is unique. It turns out that
the relevant condition is independence:

Theorem 2.2.1. Let X := {x1, . . . , xK} be any collection of vectors inRN, and let y be any
vector in span(X). If X is linearly independent, then there exists one and only one set of
scalars α1, . . . , αK such that y = ∑K

k=1 αkxk.

Proof. Since y is in the span of X, we know that there exists at least one such set of
scalars. Suppose now that there are two. In particular, suppose that

y =
K

∑
k=1

αkxk =
K

∑
k=1

βkxk

It follows from the second equality that ∑K
k=1(αk − βk)xk = 0. Using fact 2.2.4, we

conclude that αk = βk for all k. In other words, the representation is unique.

2.2.3 Dimension

In essence, the dimension of a linear subspace is the minimum number of vectors
needed to span it. To understand this idea more clearly, let’s look at an example.
Consider the plane

P := {(x1, x2, 0) ∈ R3 : x1, x2 ∈ R} (2.2)

from example 2.2.3. Intuitively, this plane is a “two-dimensional” subset ofR3. This
intuition agrees with the definition above. Indeed, P cannot be spanned by one
vector, for if we take a single vector in R3, then the span created by that singleton is
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only a line in R3, not a plane. On the other hand, P can be spanned by two vectors,
as we saw in example 2.2.3.

While P can also be spanned by three or more vectors, it turns out that one of the
vectors will always be redundant—it does not change the span. In other words, any
collection of 3 or more vectors from P will be linearly dependent. The following
theorem contains the general statement of this idea:

Theorem 2.2.2. If S is a linear subspace of RN spanned by K vectors, then every linearly
independent subset of S has at most K vectors.

Put differently, if S is spanned by K vectors, then any subset of S with more than
K vectors will be linearly dependent. This result is sometimes called the exchange
theorem. The proof is not overly hard, but it is a little long. Readers keen to learn
more will find it in most texts on linear algebra.

We now come to a key definition. If S is a linear subspace ofRN and B is some finite
subset of RN, then B is called a basis of S if B spans S and is linearly independent.

Example 2.2.7. The pair {e1, e2} is a basis for the set P defined in (2.2).

Example 2.2.8. Consider the set of canonical basis vectors {e1, . . . , eN} ⊂ RN de-
scribed in example 2.2.8. This set is linearly independent, and its span is equal to all
of RN. As a result, {e1, . . . , eN} is a basis for RN—as anticipated by the name.

Theorem 2.2.3. If S is a linear subspace of RN, then every basis of S has the same number
of elements.

Proof. Let B1 and B2 be two bases of S, with K1 and K2 elements respectively. By
definition, B2 is a linearly independent subset of S. Moreover, S is spanned by the
set B1, which has K1 elements. Applying theorem 2.2.2, we see that B2 has at most
K1 elements. That is, K2 ≤ K1. Repeating the same argument while reversing the
roles of B1 and B2 we obtain K1 ≤ K2. Hence K1 = K2.

Theorem 2.2.3 states that if S is a linear subspace ofRN, then every basis of S has the
same number of elements. This common number is called the dimension of S, and
written as dim(S). For example, if P is the plane in (2.2), then dim(P) = 2, because
the set {e1, e2} is a basis, and this set contains two elements. The whole space RN

is N dimensional, because the canonical basis vectors form a basis, and there are N
canonical basis vectors.

InR3, a line through the origin is a one-dimensional subspace, while a plane through
the origin is a two-dimensional subspace.
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Fact 2.2.5. The only N-dimensional linear subspace of RN is RN.

If we take a set of K vectors, then how large will its span be in terms of dimension?
The next lemma answers this question.

Lemma 2.2.1. Let X := {x1, . . . , xK} ⊂ RN. Then

1. dim(span(X)) ≤ K.

2. dim(span(X)) = K if and only if X is linearly independent.

Proof. Regarding part 1, let B be a basis of span(X). By definition, B is a linearly in-
dependent subset of span(X). Since span(X) is spanned by K vectors, theorem 2.2.2
implies that B has no more than K elements. Hence, dim(span(X)) ≤ K.

Regarding part 2, suppose first that X is linearly independent. Then X is a basis for
span(X). Since X has K elements, we conclude that dim(span(X)) = K.

Conversely, if dim(span(X)) = K then X must be linearly independent. For if X is
not linearly independent, then exists a proper subset X0 of X such that span(X0) =

span(X). By part 1 of this theorem, we then have dim(span(X0)) ≤ #X0 ≤ K − 1.
Therefore, dim(span(X)) ≤ K− 1. Contradiction.

Part 2 of lemma 2.2.1 is important in what follows, and also rather intuitive. It says
that the span of a set will be large when it’s elements are algebraically diverse.

2.3 Matrices and Equations

[Roadmap]

2.3.1 Rank

Let’s now connect matrices to our discussion of span, linear independence and di-
mension. We will be particularly interested in solving equations of the form Ax = b
for unknown x. We take A to be an N × K matrix. As discussed in §2.1.3–2.1.4, we
can view this matrix as a mapping f (x) = Ax from RK to RN. If b ∈ RN is given
and we are looking for an x to solve Ax = b, then we know at least one such x will

JOHN STACHURSKI January 10, 2014



2.3. MATRICES AND EQUATIONS 67

exist if b is in the range of f . Since A and f are essentially the same thing, we will
denote the range by rng(A) instead of rng( f ). That is,

rng(A) := {Ax : x ∈ RK}

Just a little bit of thought will convince you that this is precisely the span of the
columns of A:

rng(A) = span(col1(A), . . . , colK(A))

For obvious reasons, this set is sometimes called the column space of A. Being
defined as a span, it is obviously a linear subspace of RN.

As stated above, for the system Ax = b to have a solution, we require that b ∈
rng(A). If we want to check that this is true, we’ll probably be wanting to check
that rng(A) is suitably “large.” The obvious measure of size for a linear subspace
such as rng(A) is its dimension. The dimension of rng(A) is known as the rank of
A. That is,

rank(A) := dim(rng(A))

Furthermore, A is said to have full column rank if rank(A) is equal to K, the number
of its columns. Why do we say “full” rank here? Because, by definition, rng(A) is
the span by K vectors, and hence, by part 1 of lemma 2.2.1, we have dim(rng(A)) ≤
K. In other words, the rank of A is less than or equal to K. A is said to have full
column rank when this maximum is achieved.

When is this maximum achieved? By part 2 of lemma 2.2.1, this while be the case
precisely when the columns of A are linearly independent. Thus, the matrix A is
of full column rank if and only if the columns of A are linearly independent. By
fact 2.2.4 on page 63, the next characterization is also equivalent.

Fact 2.3.1. A is of full column rank if and only if the only x satisfying Ax = 0 is
x = 0.

Let’s return to the problem of solving the system Ax = b for some fixed b ∈ RN.
For existence of a solution we need b ∈ rng(A), and this range will be large when A
is full column rank. So the property of A being full column rank will be connected
to the problem of existence. Even better, the full column rank condition is exactly
what we need for uniqueness as well, as follows immediately from theorem 2.2.1.
In matrix terminology, theorem 2.2.1 translates to the following result:

Fact 2.3.2. If A has full column rank and b ∈ rng(A), then the system of equations
Ax = b has a unique solution.
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2.3.2 Square Matrices

Now let N = K, so that A is a square N × N matrix. Suppose that A is full column
rank, so that its columns are independent. In that case, fact 2.2.5 on page 66 implies
that rng(A) is equal toRN, because rng(A) is a linear subspace ofRN by definition,
and its dimension is N by the full column rank assumption.

Since rng(A) = RN, it follows immediately that, for any b ∈ RN, the system Ax = b
has a solution. Moreover, by fact 2.3.2, the solution is unique. To repeat, if A is
square and full column rank, then for any b ∈ RN, the there is a unique x ∈ RN

such that Ax = b.

Since this problem is so important, there are several different ways of describing it.
First, a square matrix A is called invertible if there exists a second square matrix B
such that AB = BA = I, where I is the identity matrix. If this is the case, then B is
called the inverse of A, and written as A−1. Invertibility of A is exactly equivalent
to the existence of a unique solution x to the system Ax = b for all b ∈ RN. Indeed,
the existence of an inverse A−1 means that we can take our solution as

xb = A−1b (2.3)

since Axb = AA−1b = Ib = b.

In addition, to each square matrix A, we can associate a unique number det(A)

called the determinant of A. The determinant crops up in many ways, but the gen-
eral definition is a bit fiddly to state and hence we omit it. (Look it up if you are
interested, but note that it won’t be required in what follows.) If det(A) = 0, then A
is called singular. Otherwise A is called nonsingular.

It turns out that nonsingularity is also equivalent to invertibility. Let’s summarize
our discussion:

Fact 2.3.3. For N × N matrix A, the following are equivalent:

1. A is of full column rank.

2. The columns of A are linearly independent.

3. A is invertible.

4. A is nonsingular.

5. For each b ∈ RN, the system Ax = b has unique solution A−1b.

JOHN STACHURSKI January 10, 2014



2.3. MATRICES AND EQUATIONS 69

The next fact collects useful results about the inverse.

Fact 2.3.4. If A and B are invertible and α 6= 0, then

1. det(A−1) = (det(A))−1,

2. (A−1)−1 = A,

3. (αA)−1 = α−1A−1, and

4. (AB)−1 = B−1A−1.

2.3.3 Other Properties of Matrices

The transpose of N × K matrix A is a K× N matrix A′ such that the first column of
A′ is the first row of A, the second column of A′ is the second row of A, and so on.
For example, given

A :=

 10 40
20 50
30 60

 B :=
(

1 3 5
2 4 6

)
(2.4)

the transposes are

A′ =
(

10 20 30
40 50 60

)
B′ :=

 1 2
3 4
5 6


Fact 2.3.5. For conformable matrices A and B, transposition satisfies the following:

1. (AB)′ = B′A′

2. (A + B)′ = A′ + B′

3. (cA)′ = cA′ for any constant c.

Note that a square matrix C is symmetric precisely when C′ = C. Note also that
A′A and AA′ are well-defined and symmetric.

Fact 2.3.6. For each square matrix A, we have

JOHN STACHURSKI January 10, 2014



2.3. MATRICES AND EQUATIONS 70

1. det(A′) = det(A), and

2. (A−1)′ = (A′)−1 whenever the inverse exists.

The trace of a square matrix is the sum of the elements on its principal diagonal.
That is,

trace


a11 a12 · · · a1N
a21 a22 · · · a2N
...

...
...

aN1 aN2 · · · aNN

 =
N

∑
n=1

ann

Fact 2.3.7. Transposition does not alter trace: trace(A) = trace(A′).

Fact 2.3.8. If A and B are N × N matrices and α and β are two scalars, then

trace(αA + βB) = α trace(A) + β trace(B)

Moreover, if A is N ×M and B is M× N, then trace(AB) = trace(BA).

The rank of a matrix can be difficult to determine. One case where it is easy is where
the matrix is idempotent. A square matrix A is called idempotent if AA = A.

Fact 2.3.9. If A is idempotent, then rank(A) = trace(A).

2.3.4 Quadratic Forms

Let A be N × N and symmetric, and let x be N × 1. The expression

x′Ax =
N

∑
j=1

N

∑
i=1

aijxixj

is called a quadratic form in x. Notice that if A = I, then this reduces to ‖x‖2, which
is positive whenever x is nonzero. The next two definitions generalize this idea: An
N × N symmetric matrix A is called

• nonnegative definite if x′Ax ≥ 0 for all x ∈ RN, and

• positive definite if x′Ax > 0 for all x ∈ RN with x 6= 0.

As we have just seen, the identity matrix is positive definite.
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Fact 2.3.10. If A is nonnegative definite, then each element ann on the principal di-
agonal is nonnegative.

Fact 2.3.11. If A is positive definite, then:

1. Each element ann on the principal diagonal is positive.

2. A is full column rank and invertible, with det(A) > 0.

To see that positive definiteness implies full column rank, consider the following
argument: If A is positive definite, then A must be full column rank, for if not there
exists a x 6= 0 with Ax = 0 (fact 2.3.1). But then x′Ax = 0 for nonzero x. This
contradicts the definition of positive definiteness.

2.4 Random Vectors and Matrices

A random vector x is just a sequence of K random variables (x1, . . . , xK). Each real-
ization of x is an element ofRK. The distribution (or cdf) of x is the joint distribution
F of (x1, . . . , xK). That is,

F(s) :=: F(s1, . . . , sK) := P{x1 ≤ s1, . . . , xK ≤ sK} :=: P{x ≤ s} (2.5)

for each s inRK. (Here and in what follows, the statement x ≤ s means that xn ≤ sn

for n = 1, . . . , K.)

Just as some but not all distributions onR have a density representation (see §1.2.2),
some but not all distributions on RK can be represented by a density. We say that
f : RK → R is the density of random vector x := (x1, . . . , xK) if∫

B
f (s) ds = P{x ∈ B} (2.6)

for every subset B of RK.2 Most of the distributions we work with in this course
have density representations.

2Actually, some subsets of RK are so messy that it’s not possible to integrate over them, so we
only require (2.6) to hold for a large but suitably well-behaved class of sets called the Borel sets. See
any text on measure theory for details.
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For random vectors, the definition of independence mirrors the scalar case. In par-
ticular, a collection of random vectors x1, . . . , xN is called independent if, given any
s1, . . . , sN, we have

P{x1 ≤ s1, . . . , xN ≤ sN} = P{x1 ≤ s1} × · · · ×P{xN ≤ sN}

We note the following multivariate version of fact 1.3.2:

Fact 2.4.1. If x and y are independent and g and f are any functions, then f (x) and
g(y) are also independent.

A random N× K matrix X is a rectangular N× K array of random variables. In this
section, we briefly review some properties of random vectors and matrices.

2.4.1 Expectations for Vectors and Matrices

Let x = (x1, . . . , xK) be a random vector taking values in RK with µk := E [xk]

for all k = 1, . . . , K. The expectation E [x] of vector x is defined as the vector of
expectations:

E [x] :=


E [x1]

E [x2]
...

E [xK]

 =


µ1

µ2
...

µK

 =: µ

More generally, if X is a random N × K matrix, then its expectation E [X] is the
matrix of the expectations:

E [X] :=


E [x11] E [x12] · · · E [x1K]

E [x21] E [x22] · · · E [x2K]
...

...
...

E [xN1] E [xN2] · · · E [xNK]


Expectation of vectors and matrices maintains the linearity of scalar expectations:

Fact 2.4.2. If X and Y are random and A, B and C are conformable constant matrices,
then

E [A + BX + CY] = A + BE [X] + CE [Y]
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The covariance between random N × 1 vectors x and y is

cov[x, y] := E [(x−E [x])(y−E [y])′]

The variance-covariance matrix of random vector x with µ := E [x] is defined as

var[x] := cov(x, x) = E [(x−E [x])(x−E [x])′] = E [(x− µ)(x− µ)′]

Expanding this out, we get

var[x] =


E [(x1 − µ1)(x1 − µ1)] · · · E [(x1 − µ1)(xN − µN)]

E [(x2 − µ2)(x1 − µ1)] · · · E [(x2 − µ2)(xN − µN)]
...

...
...

E [(xN − µN)(x1 − µ1)] · · · E [(xN − µN)(xN − µN)]


The j, k-th term is the scalar covariance between xj and xk. As a result, the principle
diagonal contains the variance of each xn.

Some simple algebra yields the alternative expressions

cov[x, y] = E [xy′]−E [x]E [y]′ and var[x] = E [xx′]−E [x]E [x]′

Fact 2.4.3. For any random vector x, the variance-covariance matrix var[x] is square,
symmetric and nonnegative definite.

Fact 2.4.4. For any random vector x, any constant conformable matrix A and any
constant conformable vector a, we have

var[a + Ax] = A var[x]A′

2.4.2 Multivariate Gaussians

The multivariate normal density or Gaussian density in RN is a function p of the
form

p(s) = (2π)−N/2 det(Σ)−1/2 exp
{
−1

2
(s− µ)′Σ−1(s− µ)

}
where µ is any N× 1 vector and Σ is a symmetric, positive definite N×N matrix. In
symbols, we represent this distribution by N (µ, Σ). Although we omit the deriva-
tions, it can be shown that if x ∼ N (µ, Σ), then

E [x] = µ and var[x] = Σ

We say that x is normally distributed if x ∼ N (µ, Σ) for some N × 1 vector µ and
symmetric, positive definite N × N matrix Σ. We say that x is standard normal if
µ = 0 and Σ = I.
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Fact 2.4.5. N × 1 random vector x is normally distributed if and only if a′x is nor-
mally distributed in R for every constant N × 1 vector a.3

Fact 2.4.6. If x ∼ N (µ, Σ), then a + Ax ∼ N (a + Aµ, AΣA′).

Here, the fact that a + Ax has mean a + Aµ and variance-covariance matrix AΣA′ is
not surprising. What is important is that normality is preserved .

Fact 2.4.7. Normally distributed random variables are independent if and only if
they are uncorrelated. In particular, if both x and y are normally distributed and
cov[x, y] = 0, then x and y are independent.

Fact 2.4.8. If x ∼ N (µ, Σ), then (x− µ)′Σ−1(x− µ) ∼ χ2(k), where k := length of x.

Fact 2.4.9. If x ∼ N (0, I) and A is a conformable idempotent and symmetric matrix
with rank(A) = j, then x′Ax ∼ χ2(j). (In view of fact 2.3.9, when using this result it
is sufficient to show that trace(A) = j.)

2.5 Convergence of Random Matrices

As a precursor to time series analyais, we extend the probabilistic notions of con-
vergence discussed in §1.4.1 to random vectors and matrices.

2.5.1 Convergence in Probability

We already have a notion of scalar convergence in probability (see §1.4.1). Extending
this to the matrix case, let {Xn}∞

n=1 be a sequence of random I × J matrices. We say

that Xn converges to a random I × J matrix X in probability (and write Xn
p→ X) if

every element of Xn converges to the corresponding element of X in probability in
the scalar sense. That is,

Xn
p→ X whenever xn

ij
p→ xij for all i and j

Here xn
ij is the i, j-th element of Xn and xij is the i, j-th element of X.

3If a = 0 then we can interpret a′x as a “normal” random variable with zero variance.
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If we are dealing with vectors (I = 1 or J = 1 in the previous definition), then the
condition for convergence has the form

xn :=

 xn
1
...

xn
K

 p→

 x1
...

xK

 =: x whenever xn
k

p→ xk for all k

With vectors, we can also consider norm deviation. In this connection, we have the
following result.

Fact 2.5.1. If {xn} is a sequence of random vectors in RK and x is a random vector
in RK, then

xn
p→ x if and only if ‖xn − x‖ p→ 0

In other words, each element of xn converges in probability to the corresponding
element of x if and only if the norm distance between the vectors goes to zero in
probability. Although fact 2.5.1 is stated in terms of vectors, the same result is in
fact true for matrices if we regard matrices as vectors. In other words, if we take
an N × K matrix A, we can think of it as a vector in RN×K = RNK by stacking all
the columns into one long column, or rows into one long row—it doesn’t matter
which. Thinking of matrices this way, fact 2.5.1 is applicable: Xn

p→ X if and only if
‖Xn − X‖ p→ 0.4

Fact 2.5.2. Assuming conformability, the following statements are true:

1. If Xn
p→ X and Xn and X are invertible, then X−1

n
p→ X−1.

2. If Xn
p→ X and Yn

p→ Y, then

Xn + Yn
p→ X + Y, XnYn

p→ XY and YnXn
p→ YX

3. If Xn
p→ X and An → A, then

Xn + An
p→ X + A, XnAn

p→ XA and AnXn
p→ AX

In part 3 of fact 2.5.2, the matrices An and A are nonrandom. The convergence
An → A means that each element of An converges in the usual scalar sense to the
corresponding element of A:

An → A means an
ij → aij for all i and j

4There are various notions of matrix norms. The one defined here is called the Frobenius norm.
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Alternatively, we can stack the matrices into vectors and take the norms, as dis-
cussed above. Then we say that An → A if ‖An −A‖ → 0. The two definitions can
be shown to be equivalent.

As an example of how fact 2.5.2 can be used, let’s establish convergence of the
quadratic form

a′Xna
p→ a′Xa whenever a is a conformable constant vector and Xn

p→ X (2.7)

This follows from two applications of fact 2.5.2. Applying fact 2.5.2 once we get
a′Xn

p→ a′X. Applying it a second time yields the convergence in (2.7).

2.5.2 Convergence in Distribution

Now let’s extend the notion of convergence in distribution to random vectors. The
definition is almost identical to the scalar case, with only the obvious modifications.
Let {Fn}∞

n=1 be a sequence of cdfs on RK, and let F be a cdf on RK. We say that Fn

converges to F weakly if, for any s such that F is continuous at s, we have

Fn(s)→ F(s) as n→ ∞

Let {xn}∞
n=1 and x be random vectors in RK, where xn ∼ Fn and x ∼ F. We say

that xn converges in distribution to x if Fn converges weakly to F. In symbols, this

convergence is represented by xn
d→ x.

As discussed above, convergence of xn to x in probability simply requires that the
elements of xn converge in probability (in the scalar sense) to the corresponding
elements of x. For convergence in distribution this is not generally true:

xn
k

d→ xk for all k does not imply xn :=

 xn
1
...

xn
K

 d→

 x1
...

xK

 =: x

Put differently, convergence of the marginals does not necessarily imply conver-
gence of the joint distribution. (As you might have guessed, one setting where con-
vergence of the marginals implies convergence of the joint is when the elements of
the vectors are independent, and the joint is just the product of the marginals.)

The fact that elementwise convergence in distribution does not necessarily imply
convergence of the vectors is problematic, because vector convergence is harder
to work with than scalar convergence. Fortunately, we have the following results,
which provide a link from scalar to vector convergence:
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Fact 2.5.3. Let xn and x be random vectors in RK.

1. If a′xn
d→ a′x for any a ∈ RK, then xn

d→ x.

2. If a′xn
p→ a′x for any a ∈ RK, then xn

p→ x.

The second of these results is quite straightforward to prove (exercise 8.5.2). The
first is more difficult (the standard argument uses characteristic functions). It is
often referred as the Cramer-Wold device.

As in the scalar case (fact 1.4.4), convergence in distribution is preserved under con-
tinuous transformations:

Fact 2.5.4 (Continuous mapping theorem). Let xn and x be random vectors inRK. If

g : RK → RJ is continuous and xn
d→ x, then g(xn)

d→ g(x).

Another result used routinely in econometric theory is the vector version of Slut-
sky’s theorem:

Fact 2.5.5 (Slutsky’s theorem). Let xn and x be random vectors in RK, let Yn be ran-

dom matrices, and let C be a constant matrix. If Yn
p→ C and xn

d→ x, then

Ynxn
d→ Cx and Yn + xn

d→ C + x

whenever the matrices are conformable.

2.5.3 Vector LLN and CLT

With the above definitions of convergence in hand, we can move on to the next topic:
Vector LLN and CLT. The scalar LLN and CLT that we discussed in §1.4 extend to
the vector case in a natural way. For example, we have the following result:

Theorem 2.5.1. Let {xn} be an IID sequence of random vectors inRK withE [‖xn‖2] < ∞.
Let µ := E [xn] and let Σ := var[xn]. For this sequence we have

x̄N :=
1
N

N

∑
n=1

xn
p→ µ and

√
N (x̄N − µ)

d→ N (0, Σ) (2.8)
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Figure 2.9: LLN, vector case

Figure 2.9 illustrates the LLN in two dimensions. The green dot is the point 0 =

(0, 0) in R2. The black dots are IID observations x1, . . . , xN of a random vector with
mean µ = 0. The red dot is the sample mean 1

N ∑N
n=1 xn. (Remember that we are

working with vectors here, so the summation and scalar multiplication in the sam-
ple mean x̄N is done elementwise—in this case for two elements. In particular, the
sample mean is a linear combination of the observations x1, . . . , xN.) By the vector
LLN, the red dot converges to the green dot.

The vector LLN in theorem 2.5.1 follows from the scalar LLN. To see this, let xn be as
in theorem 2.5.1, let a be any constant vector inRK and consider the scalar sequence
{yn} defined by yn = a′xn. The sequence {yn} inherets the IID property from {xn}.5
By the scalar LLN (theorem 1.4.1) we have

1
N

N

∑
n=1

yn
p→ E [yn] = E [a′xn] = a′E [xn] = a′µ

But
1
N

N

∑
n=1

yn =
1
N

N

∑
n=1

a′xn = a′
[

1
N

N

∑
n=1

xn

]
= a′x̄N

Since a was arbitrary, we have shown that

a′x̄N
p→ a′µ for any a ∈ RK

The claim x̄N
p→ µ now follows from fact 2.5.3.

5Functions of independent random variables are themselves independent (fact 1.3.2, page 27).
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The vector CLT in theorem 2.5.1 also follows from the scalar case. The proof is rather
similar to the vector LLN proof we have just completed. See exercise 8.5.5.

2.6 Exercises

Ex. 2.6.1. Given two vectors x and y, show that |‖x‖ − ‖y‖| ≤ ‖x− y‖.6

Ex. 2.6.2. Use the first property in fact 2.1.1 to show that if y ∈ RN is such that
y′x = 0 for every x ∈ RN, then y = 0.

Ex. 2.6.3. Prove the second part of theorem 2.1.1. In particular, show that if f : RK →
RN is linear, then there exists an N×K matrix A such that f (x) = Ax for all x ∈ RK.7

Ex. 2.6.4. Show that if S and S′ are two linear subspaces of RN, then S ∩ S′ is also a
linear subspace.

Ex. 2.6.5. Show that every linear subspace of RN contains the origin 0.

Ex. 2.6.6. Show that the vectors (1, 1) and (−1, 2) are linearly independent.8

Ex. 2.6.7. Find two unit vectors (i.e., vectors with norm equal to one) that are or-
thogonal to (1,−2).

Ex. 2.6.8. Let a ∈ RN and let A := {x ∈ RN : a′x = 0}. Show that A is a linear
subspace of RN.

Ex. 2.6.9. Let Q be the subset of R3 defined by

Q := {(x1, x2, x3) ∈ R3 : x2 = x1 + x3}

Is Q a linear subspace of R3? Why or why not?

Ex. 2.6.10. Let Q be the subset of R3 defined by

Q := {(x1, x2, x3) ∈ R3 : x2 = 1}

Is Q a linear subspace of R3? Why or why not?

6Hint: Use the triangle inequality.
7Hint: colk(A) = f (ek).
8Hint: Look at the different definitions of linear independence. Choose the one that’s easiest to

work with in terms of algebra.
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Ex. 2.6.11. Let X := {x1, . . . , xK} be a linearly independent subset of RN. Is it
possible that 0 ∈ X? Why or why not?

Ex. 2.6.12. Prove facts 2.3.1 and 2.3.10.

Ex. 2.6.13. Show that for any two conformable matrices A and B, we have (AB)−1 =

B−1A−1.9

Ex. 2.6.14. Let A be a constant N × N matrix. Assuming existence of the inverse
A−1, show that (A′)−1 = (A−1)′.

Ex. 2.6.15. Show that if ei and ej are the i-th and j-th canonical basis vectors of RN

respectively, and A is an N × N matrix, then e′iAej = aij, the i, j-th element of A.

Ex. 2.6.16. Let

A :=
(

1 −1
−1 1

)
Show that A is nonnegative definite.

Ex. 2.6.17. Show that for any matrix A, the matrix A′A is well-defined (i.e., multi-
plication is possible), square, and nonnegative definite.

Ex. 2.6.18. Show that if A and B are positive definite and A +B is well defined, then
it is also positive definite.

Ex. 2.6.19. Let A be N × K. Show that if Ax = 0 for all K× 1 vectors x, then A = 0
(i.e., every element of A is zero).

Ex. 2.6.20. Let IN be the N × N identity matrix.

1. Explain briefly why IN is full column rank.

2. Show that IN is the inverse of itself.

3. Let A := αIN. Give a condition on α such that A is positive definite.

Ex. 2.6.21. Let X := IN − 2uu′, where u is an N × 1 vector with ‖u‖ = 1. Show that
X is symmetric and XX = IN.

Ex. 2.6.22. Let 1 be an N × 1 vector of ones. Consider the matrix

Z :=
1
N

11′

9Hint: Look at the definition of the inverse! Always look at the definition, and then show that the
object in question has the stated property.
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1. Show that if x is any N × 1 vector, then Zx is a vector with all elements equal
to the sample mean of the elements of x.

2. Show that Z is idempotent.

Ex. 2.6.23. Show that if x is a random vector withE [xx′] = I and A is a conformable
constant matrix, then E [x′Ax] = trace(A).

Ex. 2.6.24. Let x be random and let a be constant. Show that if E [x] = µ and
var[x] = Σ, then E [a′x] = a′µ and var[a′x] = a′Σa.

Ex. 2.6.25. Let x be a random K× 1 vector. Show thatE [xx′] is nonnegative definite.

Ex. 2.6.26. Let x = (x1, . . . , xN) ∼ N (0, IN).

1. Are x1 and x2 independent? Why or why not?

2. What is the distribution of x2
1? Why?

3. What is the distribution of x2
1/x2

2? Why?

4. What is the distribution of x1[2/(x2
2 + x2

3)]
1/2? Why?

5. What is the distribution of ‖x‖2? Why?

6. If a is an N × 1 constant vector, what is the distribution of a′x?

Ex. 2.6.27 (Computational). Write a function in R called innerprod that computes
the inner product of any two vectors using sum. Write another function called norm,
also using sum, that computes the norm of any vector. Choose two vectors and a
scalar, and check that the properties in fact 2.1.1 all hold.

Ex. 2.6.28 (Computational). Form a 4× 5 matrix A, the elements of which are chosen
randomly via uniform sampling from {1, 2, 3, 4} with replacement (look up the on-
line documentation on the sample function). Compute the row sums and column
sums by either pre- or postmultiplying by a vector of ones. (Which is which?) Check
against the built-in functions colSums and rowSums.

Ex. 2.6.29 (Computational). Using the matrix A in exercise 2.6.28, create a new ma-
trix B such that the j-th column of B is the j-th column of A minus the column mean
of the j-th column of A. The built-in function colMeans can be used to obtain the
column means.
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2.6.1 Solutions to Selected Exercises

Solution to Exercise 2.6.8. Let x, y ∈ A and let α, β ∈ R. We must show that z :=
αx + βy ∈ A, or, equivalently, a′z = a′(αx + βy) = 0. This is immediate, because
a′(αx + βy) = αa′x + βa′y = 0 + 0 = 0.

Solution to Exericse 2.6.9. If a := (1,−1, 1), then Q is all x with a′x = 0. This set is
a linear subspace of R3, as shown in exercise 2.6.8.

Solution to Exercise 2.6.11. If X has more than one element, then it is not possible.
To see this, suppose (without any loss of generality) that x1 = 0 ∈ X. Then

x1 = 0 =
K

∑
k=2

0xk

In other words, x1 is a linear combination of the elements of X. This contradicts
linear independence.

Solution to Exercise 2.6.20. The solutions are as follows: (1) IN is full column rank
because its columns are the canonical basis vectors, which are independent. (2) By
definition, B is the inverse of A if BA = AB = IN. It follows immediately that IN
is the inverse of itself. (3) A sufficient condition is α > 0. If this holds, then given
x 6= 0, we have x′αINx = α‖x‖2 > 0.

Solution to Exercise 2.6.21. First, X is symmetric because

X′ = (IN − 2uu′)′ = I′N − 2(uu′)′ = IN − 2(u′)′u′ = IN − 2uu′ = X

Second, XX = IN, because

XX = (IN − 2uu′)(I′N − 2uu′) = ININ − 2IN2uu′ + (2uu′)(2uu′)

= IN − 4uu′ + 4uu′uu′ = IN − 4uu′ + 4uu′ = IN

The second last equality is due to the assumption that u′u = ‖u‖2 = 1.

Solution to Exercise 2.6.26. First note that since x ∼ N (0, IN) we have cov[xi, xj] =

0 for all i 6= j. Since uncorrelated normal random variables are independent, we
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then have x1, . . . , xN
IID∼ N (0, 1). Since sums of squares of independent standard

normals are chi-squared, we have in particular that

k

∑
n=1

x2
n ∼ χ2(k) (2.9)

for any k ≤ N. The solutions to the exercise can now be given:

1. Yes, for the reason just described.

2. x2
1 ∼ χ2(1) by (2.9)

3. x2
1/x2

2 ∼ F(1, 1), because if Q1 ∼ χ2(k1) and Q2 ∼ χ2(k2) and Q1 and Q2 and
independent, then (Q1/k1)/(Q2/k2) ∼ F(k1, k2).

4. x1[2/(x2
2 + x2

3)]
1/2 ∼ t(2), because if Z ∼ N (0, 1) and Q ∼ χ2(k) and Z and Q

are independent, then Z(k/Q)1/2 ∼ t(k).

5. ‖x‖2 = ∑N
n=1 x2

N ∼ χ2(N) by (2.9).

6. Linear combinations of normals are normal, so y := a′x is normal. Evidently
E [y] = E [a′x] = a′E [x] = 0. Using independence, we obtain

var[y] =
N

∑
n=1

a2
n var[xn] =

N

∑
n=1

a2
n

Hence y ∼ N (0, ∑N
n=1 a2

n).
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Chapter 3

Projections

This chapter provides further background in linear algebra for studying OLS with
multiple regressors. At the heart of the chapter is the orthogonal projection theorem,
which lies behind many of the key results in OLS theory. The theory of projections
also allows us to define conditional expectations, and determine the properties of
the conditioning operation.

3.1 Orthogonality and Projection

[roadmap]

3.1.1 Orthogonality

Let x and z be two vectors in RN. If x′z = 0, then x and z are said to be orthogonal,
and we write x ⊥ z. In R2, x and z are orthogonal when they are perpendicular to
one another (figure 3.1). If x is a vector and S is a set, then we say that x is orthogonal
to S if x ⊥ z for all z ∈ S. In this case we write x ⊥ S. Figure 3.2 illustrates.

The first thing you need to know about orthogonal vectors is the Pythagorean Law:

Theorem 3.1.1. If x1, . . . , xK are vectors in RN and xi ⊥ xj whenever i 6= j, then

‖x1 + · · ·+ xK‖2 = ‖x1‖2 + · · ·+ ‖xK‖2

Orthogonality and linear independence are related. For example,

84



3.1. ORTHOGONALITY AND PROJECTION 85

Figure 3.1: x ⊥ z

Figure 3.2: x ⊥ S
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Fact 3.1.1. If V is a finite set with x ⊥ y for all distinct pairs x, y ∈ V, and, moreover,
0 /∈ V, then V is linearly independent.

3.1.2 Projections

One problem that comes up in many different contexts is approximation of an el-
ement y of RN by an element of a given subspace S of RN. Stated more precisely,
the problem is, given y and S, to find the closest element ŷ of S to y. Closeness is in
terms of euclidean norm, so ŷ is the minimizer of ‖y− z‖ over all z ∈ S:

ŷ := argmin
z∈S

‖y− z‖

Existence of a minimizer is not immediately obvious, suggesting that ŷ may not be
well-defined. However, it turns out that we need not be concerned, as ŷ always
exists (given any S and y). The next theorem states this fact, as well as providing a
way to identify ŷ.

Theorem 3.1.2 (Orthogonal Projection Theorem, Part 1). Let y ∈ RN and let S be a
subspace ofRN. The closest point in S to y is the unique vector ŷ ∈ S such that y− ŷ ⊥ S.

The vector ŷ in theorem 3.1.2 is called the orthogonal projection of y onto S. Al-
though we do not prove the theorem here, the intuition is easy to grasp from a
graphical presentation. Figure 3.3 illustrates. Looking at the figure, we can see that
the closest point ŷ to y within S is indeed the one and only point in S such that y− ŷ
is orthogonal to S.

Holding S fixed, we can think of the operation

y 7→ the orthogonal projection of y onto S

as a function from RN to RN.1 The function is typically denoted by P, so that P(y)
or Py represents the orthogonal projection ŷ. In general, P is called the orthogonal
projection onto S. Figure 3.4 illustrates the action of P on two different vectors.

Using this notation, we can restate the orthogonal projection theorem, as well as
adding some properties of P:

Theorem 3.1.3 (Orthogonal Projection Theorem 2). Let S be any linear subspace, and
let P : RN → RN be the orthogonal projection onto S. The function P is linear. Moreover,
for any y ∈ RN, we have

1Confirm in your mind that we are describing a functional relationship, as defined in §13.1.1.
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Figure 3.3: Orthogonal projection

Figure 3.4: Orthogonal projection under P
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1. Py ∈ S,

2. y− Py ⊥ S,

3. ‖y‖2 = ‖Py‖2 + ‖y− Py‖2,

4. ‖Py‖ ≤ ‖y‖, and

5. Py = y if and only if y ∈ S.

These results are not difficult to prove, given theorem 3.1.2. Linearity of P is left as
an exercise (exercise 3.4.6). Parts 1 and 2 follow directly from theorem 3.1.2. To see
part 3, observe that y can be decomposed as

y = Py + y− Py

Part 3 now follows from parts 1–2 and the Pythagorean law. (Why?) Part 4 follows
from part 3. (Why?) Part 5 is obvious from the definition of Py as the closest point
to y in S.

There’s one more very important property of P that we need to make note of: Sup-
pose we have two linear subspaces S1 and S2 of RN, where S1 ⊂ S2. What then is
the difference between (a) first projecting a point onto the bigger subspace S2, and
then projecting the result onto the smaller subspace S1, and (b) projecting directly to
the smaller subspace S1? The answer is none—we get the same result.

Fact 3.1.2. Let S1 and S2 be two subspaces of RN, and let y ∈ RN. Let P1 and P2 be
the projections onto S1 and S2 respectively. If S1 ⊂ S2, then

P1P2y = P2P1y = P1y

There’s yet another way of stating the orthogonal projection theorem, which is also
informative. Given S ⊂ RN, the orthogonal complement of S is defined as

S⊥ := {x ∈ RN : x ⊥ S}

In other words, S⊥ is the set of all vectors that are orthogonal to S. Figure 3.5 gives
an example in R2.

Fact 3.1.3. Given any S, the orthogonal complement S⊥ is always a linear subspace.
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Figure 3.5: Orthogonal complement of S

This is easy enough to confirm: Looking back at the definition of linear subspaces,
we see that the following statement must be verified: Given x, y ∈ S⊥ and α, β ∈ R,
the vector that αx + βy is also in S⊥. Clearly this is the case, because if z ∈ S, then

(αx + βy)′z = αx′z + βy′z (∵ linearity of inner products)

= α× 0 + β× 0 = 0 (∵ x, y ∈ S⊥ and z ∈ S)

We have shown that αx + βy ⊥ z for any z ∈ S, thus confirming that αx + βy ∈ S⊥.

Fact 3.1.4. For S ⊂ RN, we have S ∩ S⊥ = {0}.

Now, let’s look at the orthogonal projection theorem again. Our interest was in
projecting y onto S. However, we have just learned that S⊥ is itself a linear subspace,
so we can also project y onto S⊥. Just as we used P to denote the function sending
y into its projection onto S, so we’ll use M to denote the function sending y into
its projection onto S⊥. The result we’ll denote by û, so that û := My. Figure 3.6
illustrates. The figure suggests that we will have y = ŷ + û, and indeed that is the
case. The next theorem states this somewhat more mathematically.

Theorem 3.1.4 (Orthogonal Projection Theorem 3). Let S be a linear subspace ofRN. If
P is the orthogonal projection onto S and M is the orthogonal projection onto S⊥, then Py
and My are orthogonal, and

y = Py + My

If S1 and S2 are two subspaces of RN with S1 ⊂ S2, then S⊥2 ⊂ S⊥1 . This means that
the result in fact 3.1.2 is reversed for M.
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Figure 3.6: Orthogonal projection

Fact 3.1.5. Let S1 and S2 be two subspaces ofRN and let y ∈ RN. Let M1 and M2 be
the projections onto S⊥1 and S⊥2 respectively. If S1 ⊂ S2, then,

M1M2y = M2M1y = M2y

Fact 3.1.6. Py = 0 if and only if y ∈ S⊥, and My = 0 if and only if y ∈ S.2

3.2 Overdetermined Systems of Equations

When we get to multivariate linear regression, we will see that, mathematically
speaking, the problem we are presented with is one of solving what is called an
overdetermined system of equations. In turn, overdetermined systems of equations
are usually solved using orthogonal projection. Let’s have a quick look at how this
is done. We begin with a system of equations such as Xβ = y, where X is N × K,
β is K × 1, and y is N × 1. We regard the matrix X and the vector y as given, and
seek a β ∈ RK that solves this equation. Throughout this section, we maintain the
assumption that X is full column rank.

If K = N, then the full column rank assumption and fact 2.3.3 imply that this system
has precisely one solution. However, we are going to study the case when N > K. In
this case, the system of equations is said to be overdetermined. This corresponds to

2For example, if Py = 0, then y = Py + My = My. Hence M does not shift y. If an orthogonal
projection onto a subspace doesn’t shift a point, that’s because the point is already in that subspace
(see, e.g., theorem 3.1.3). In this case the subspace is S⊥, and we conclude that y ∈ S⊥.

JOHN STACHURSKI January 10, 2014



3.2. OVERDETERMINED SYSTEMS OF EQUATIONS 91

the situation where the number of equations (equal to N) is larger than the number
of unknowns (the K elements of β). Intuitively, in such a situation, we may not be
able find a β that satisfies all N equations.

To understand this problem, recall from §2.3.1 that X can be viewed as a mapping
from RK to RN, and its range is the linear subspace of RN spanned by the columns
of X:

rng(X) := {all vectors Xβ with β ∈ RK} :=: column space of X

As discussed in §2.3.1, a solution to Xβ = y exists precisely when y lies in rng(X).
In general, given our assumption that K < N, this outcome is unlikely.3 As a result,
the standard approach is to admit that an exact solution may not exist, and instead
focus on finding a β ∈ RK such that Xβ is as close to y as possible. Closeness is
defined in the euclidean sense, so the problem is to minimize ‖y− Xβ‖ over the set
of all β ∈ RK. Using the orthogonal projection theorem, the minimizer is easy to
identify:

Theorem 3.2.1. The minimizer of ‖y− Xβ‖ over all β ∈ RK is β̂ := (X′X)−1X′y.

Proof. If we can show that Xβ̂ is the closest point in rng(X) to y, we then have

‖y− Xβ̂‖ ≤ ‖y− Xβ‖ for any β ∈ RK

which is all we need to prove. To verify that ŷ := Xβ̂ is in fact the closest point in
rng(X) to y, recall the orthogonal projection theorem (page 86). By this theorem,
ŷ := Xβ̂ is the closest point in rng(X) to y when

1. ŷ ∈ rng(X), and

2. y− ŷ ⊥ rng(X)

Here 1 is true by construction, and 2 translates to claim

y− X(X′X)−1X′y ⊥ Xβ for all β ∈ RK

3Why is it unlikely that y lies in the range of X? Since X is assumed to be full column rank, the
range of X is a K-dimensional subspace of RN , while y is any point in RN . In a sense, for K < N, all
K-dimensional subspaces ofRN are “small,” and the “chance” of y happening to lie in this subspace
is likewise small. For example, consider the case where N = 3 and K = 2. Then the column space
of X forms a 2 dimensional plane in R3. Intuitively, this set has no volume because planes have no
“thickness,” and hence the chance of a randomly chosen y lying in this plane is near zero. More
formally, if y is drawn from a continuous distribution overR3, then the probability that it falls in this
plane is zero, due to the fact that planes inR3 are always of “Lebesgue measure zero.”
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This is true, because if β ∈ RK, then

(Xβ)′[y− X(X′X)−1X′y] = β′[X′y− X′X(X′X)−1X′y] = β′[X′y− X′y] = 0

The proof of theorem 3.2.1 is done.

Notice that theorem 3.2.1 implicitly assumes that X′X is invertible. This is justified,
however, because X is assumed to be full column rank. (Exercise 3.4.9.)

Remark 3.2.1. On an intuitive level, why do we need full column rank for X? Full
rank means that the columns of X are linearly independent. Let’s drop this assump-
tion and consider what happens. The set rng(X) is still a linear subspace, and the
orthogonal projection theorem still gives us a closest point ŷ to y in rng(X). Since
ŷ ∈ rng(X), there still exists a vector β̂ such that ŷ = Xβ̂. The problems is that now
there may exist two such vectors—or even an infinity.

Let’s tie this discussion in to theorem 3.1.4 on page 89. We define the projection
matrix P associated with X as

P := X(X′X)−1X′ (3.1)

We also define the annihilator M associated with X as

M := I− P (3.2)

where I is, as usual, the identity matrix (in this case N×N). Given these definitions,
we then have

Py = X(X′X)−1X′y = Xβ̂ = ŷ

and
My = (I− P)y = y− Py = y− ŷ

The projection matrix and the annihilator correspond to the two projections P and
M in theorem 3.1.4. P projects onto rng(X), while M projects onto the orthogonal
complement of rng(X). In particular, to find the closest element of rng(X) to a given
vector y in RN, we can just premultiply y by P := X(X′X)−1X′.

Fact 3.2.1. Both P and M are symmetric and idempotent.

The proof is an exercise (exercise 3.4.10). Idempotence is rather intuitive here, be-
cause both P and M represent orthogonal projections onto linear subspaces. Such
projections map vectors into their respective subspaces. Applying the mapping a
second time has no effect, because the vector is already in the subspace.

JOHN STACHURSKI January 10, 2014



3.3. CONDITIONING 93

Fact 3.2.2. The annihilator M associated with X satisfies MX = 0.

The proof is an exercise. (Exercise 3.4.11.) The intuition is as follows: The j-th col-
umn of MX is Mxj, where xj is the j-th column of X. Since xj is in rng(X), it gets
mapped into the zero vector by M. This follows from fact 3.1.6 on page 90, but it’s
also quite intuitive in light of figure 3.6 (where S corresponds to rng(X)).

3.3 Conditioning

The main purpose of this section is to introduce conditional expectations and study
their properties. The definition of conditional expectations given in elementary
probability texts is often cumbersome to work with, and fails to provide the big
picture. In advanced texts, there are several different approaches to presenting con-
ditional expectations. The one I present here is less common than the plain vanila
treatment, but it is, to my mind, by far the most intuitive. As you might expect given
the location of this discussion, the presentation involves orthogonal projection.

3.3.1 The Space L2

Suppose we want to predict the value of a random variable u using another variable
v. In this case we’d want u and v to be similar to each other in some sense. Since it
helps to think geometrically, we usually talk about “closeness” instead of similarity,
but the meaning is the same. A natural measure of closeness is mean squared error
(MSE). The mean squared error of v as a predictor of u is defined asE [(u− v)2]. For
the purposes of this section, it will be more convenient if we make a slight adjust-
ment, replacing the mean squared error with the root mean squared error (RMSE),
which is, as the name suggests, the square root of the MSE. Since we’ll be using it a
lot, let’s give the RMSE its own notation:

9u− v9 :=
√
E [(u− v)2]

More generally, if we define

9 z9 :=
√
E [z2] (3.3)

and regard this as the “norm” of the random variable z, then the RMSE between u
and v is the “norm” of the random variable u− v.
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In fact the random variable “norm” 9 · 9 defined in (3.3) behaves very much like
the euclidean norm ‖ · ‖ over vectors defined in (2.1) on page 50. If z is a vector in
RN and z is a random variable with density f , then the definitions of the two norms
written side by side look pretty similar:

‖z‖ =
(

N

∑
n=1

z2
n

)1/2

and 9 z9 =

(∫
s2 f (s)ds

)1/2

More importantly, all the properties of the euclidean norm ‖ · ‖ given in fact 2.1.1
(page 52) carry over to then “norm” 9 · 9 if we replace vectors with random vari-
ables. So let’s stop calling 9 ·9 a “norm,” and just start calling it a norm.4

Unlike the situation with the euclidean norm, there is a risk here that 9z9 may not
be defined because E [z2] = ∞. So for the purposes of this section, let’s restrict
attention to random variables with finite second moment. The standard name of
this set of random variables is L2. That is,

L2 := { all random variables x with E [x2] < ∞}

We can draw another parallel with the euclidean norm. As we saw in §2.1.1, the
euclidean norm is defined in terms of the inner product on RN. If x and y are two
vectors inRN, then the inner product is x′y, and the norm of vector x is ‖x‖ =

√
x′x.

Similarly, for random variables x and y, we define

inner product of x and y := E [xy]

As for the euclidean case, you can see here that the norm 9x9 of x is precisely the
square root of the inner product of x with itself.

As in the euclidean case, if the inner product of x and y is zero, then we say that
x and y are orthogonal, and write x ⊥ y. This terminology is used frequently in
econometrics (often by people who aren’t actually sure why the term “orthogonal”
is used—which puts you one step ahead of them). Clearly, if either x or y is zero
mean, then orthogonality of x and y is equivalent to cov[x, y] = 0.

4One caveat is that while ‖x‖ = 0 implies that x = 0, it is not true that 9z9 = 0 implies z is the
zero random variable (i.e., z(ω) = 0 for all ω ∈ Ω). However, we can say that if 9z9 = 0, then the set
E := {ω ∈ Ω : |z(ω)| > 0} satisfies P(E) = 0. In this sense, z differs from the zero random variable
only in a trivial way.
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3.3.2 Measurability

What’s the main point of the discussion in the previous section? By providing the
collection of random variables L2 with a norm, we’ve made it look rather similar to
euclidean vector space RN. The advantage of this is that we have a lot of geometric
intuition about the vector space RN. Since L2 with its norm 9 · 9 behaves a lot
like RN with its norm ‖ · ‖, that same geometric intuition concerning vectors can
be applied to the study of random variables. For example, we will see that the
orthogonal projection theorem carries over to L2, and this is precisely how we will
study conditional expectation.

Recall that, in the case of RN, orthogonal projection starts with a linear subspace
S of RN. Once we have this subspace, we think about how to project onto it. In
fact S is the crucial component here, because once we select S, we implictly define
the orthogonal projection mapping P that projects onto S (see theorems 3.1.2 and
3.1.3). So when I tell you that conditional expectation is characterized by orthogonal
projection, you will understand that the first thing we need to think about is the
linear subspaces that we want to project onto. It is to this topic that we now turn.

The first step is a definition at the very heart of probability theory: measurability. Let
x1, . . . , xp be some collection of random variables, and let G := {x1, . . . , xp}. Thus,
G is a set of random variables, often referred to in what follows as the information
set. We will say that another random variable z is G-measurable if there exists a
(nonrandom) function g : Rp → R such that

z = g(x1, . . . , xp)

Informally, what this means is that once the values of the random variables x1, . . . , xp

have been realized, the variable z is completely determined (i.e., no longer random)
and it’s realized value can be calculated (assuming that we can calculate the func-
tional form g). You might like to imagine it like this: Uncertainty is realized, in the
sense that some ω is selected from the sample space Ω. Suppose that we don’t get
to view ω itself, but we do get to view certain random outcomes. For example, we
might get to observe the realized values x1(ω), . . . , xp(ω). If z is G-measurable, we
can now calculate the realized value z(ω) of z, even without knowning ω, because
we can compute z(ω) = g(x1(ω), . . . , xp(ω)).5

5A technical note: In the definition of measurability above, where we speak of existence of the
function g, it is additional required that the function g is “Borel measurable.” For the purposes of
this course, we can regard non-Borel measurable functions as a mere theoretical curiosity. As such,
the distinction will be ignored. See any text on measure theory for further details.
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As a matter of notation, if G = {x} and y is G-measurable, then we will also say that
y is x-measurable.

Example 3.3.1. Let x and z be two random variables. If z = 2x + 3, then z is x-
measurable. To see this formally, we can write z = g(x) when g(x) = 2x + 3. Less
formally, when x is realized, the value of z can be calculated.

Example 3.3.2. Let x1, . . . , xN be random variables and let x̄N be their sample mean.
If G = {x1, . . . , xN}, then x̄N := N−1 ∑N

n=1 xn is clearly G-measurable.

Example 3.3.3. If x and y are independent, then y is not x-measurable. Indeed,
if y was x-measurable, then we would have y = g(x) for some function g. This
contradicts independence of x and y.

Example 3.3.4. Let x, y and z be three random variables with z = x+ y. Suppose that
x and y are independent. Then z is not x-measurable. Intuitively, even if we know
the realized value of x, the realization of z cannot be computed until we know the
realized value of y. Formally, if z is x-measurable then z = g(x) for some function
g. But then y = g(x)− x, so y is x-measurable. This contradicts independence of x
and y.

Example 3.3.5. Let y = α, where α is a constant. This degenerate random variable
is G-measurable for any information set G, because y is already deterministic. For
example, if G = {x1, . . . , xp}, then we can take y = g(x1, . . . , xp) = α + ∑

p
i=1 0xi.

If x and y are known given the information in G, then a third random variable that
depends on only on x and y is likewise known given G. Hence G-measurability is
preserved under the taking of sums, products, etc. In particular,

Fact 3.3.1. Let α, β be any scalars, and let x and y be random variables. If x and y are
both G-measurable, then u := xy and v := αx + βy are also G-measurable.

Let G andH be two information sets with G ⊂ H. In this case, if random variable z is
G measurable, then it is also H-measurable. This follows from our intuitive definition
of measurability: If the value z is known once the variables in G are known, then it
is certainly known when the extra information provided byH is available. The next
example helps to clarify.

Example 3.3.6. Let x, y and z be three random variables, let G = {x}, and let
H = {x, y}. Suppose that z = 2x + 3, so that z is G-measurable. Then z is also
H-measurable. Informally, we can see that z is deterministic once the variables inH
are realized. Formally, we can write z = g(x, y), where g(x, y) = 2x + 3+ 0y. Hence
z is alsoH-measurable as claimed.
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Let’s note this idea as a fact:

Fact 3.3.2. If G ⊂ H and z is G-measurable, then z isH-measurable.

We started off this section by talking about projecting onto linear subspaces. Recall
that S ⊂ RN is called a linear subspace of RN if, given arbitrary scalars α, β and
vectors x, y in S, the linear combination αx + βy is again in S. Similarly S ⊂ L2 is
called a linear subspace of L2 if, given arbitrary scalars α, β and random variables
x, y in S, the random variable αx + βy is also in S.

For conditional expectations, the subspaces of interest are the subspaces of measur-
able random variables. In particular, given G ⊂ L2, we define

L2(G) := {the set of all G-measurable random variables in L2}

In view of fact 3.3.1, we have the following important result:

Fact 3.3.3. For any G ⊂ L2, the set L2(G) is a linear subspace of L2.

From fact 3.3.2 we see that, in the sense of set inclusion, the linear subspace is in-
creasing with respect to the information set.

Fact 3.3.4. If G ⊂ H, then L2(G) ⊂ L2(H).

3.3.3 Conditional Expectation

Now it’s time to define conditional expectations. Let G ⊂ L2 and y be some ran-
dom variable in L2. The conditional expectation of y given G is written as E [y | G]
or E G [y], and defined as the closest G-measurable random variable to y.6 More
formally,

E [y | G] := argmin
z∈L2(G)

9y− z9 (3.4)

This definition makes a lot of sense. Our intuitive understanding of the conditional
expectation E [y | G] is that it is the best predictor of y given the information con-
tained in G. The definition in (3.4) says the same thing. It simultaneously restricts
E [y | G] to be G-measurable, so we can actually compute it once the variables in G
are realized, and selects E [y | G] as the closest such variable to y in terms of RMSE.

6I prefer the notation E G [y] to E [y | G] because, as we will see, E G is a function (an orthogonal
projection) from L2 to L2, and the former notation complements this view. However, the notation
E [y | G] is a bit more standard, so that’s the one we’ll use.
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While the definition makes sense, it still leaves many open questions. For example,
there are many situations where minimizers don’t exist, or, if the do exist, there are
lots of them. So is our definition really a definition? Moreover, even assuming we
do have a proper definition, how do we actually go about computing conditional ex-
pectations in practical situations? And what properties do conditional expectations
have?

These look like tricky questions, but fortunately the orthogonal projection theorem
comes to the rescue. The orthogonal projection theorem in L2 is almost identical to
the orthogonal projection theorem we gave for RN. Given a linear subspace S of L2

and a random variable y in L2, there is a unique ŷ ∈ S such that

9y− ŷ9 ≤ 9y− z 9 for all z ∈ S

The variable ŷ ∈ S is called the orthogonal projection of y onto S.7 Just as for the
RN case, the projection is characterized by two properties:

ŷ is the orthogonal projection of y onto S if and only if ŷ ∈ S and y− ŷ ⊥ S

As for RN, we can think of y 7→ ŷ as a function, which we denote by P, so that Py is
the orthogonal projection of y onto S for arbitrary y ∈ L2. Moreover, P satisfies all
the properties in theorem 3.1.3 (page 86). Let’s state this as a theorem for the record.

Theorem 3.3.1. Given a linear subspace S of L2, the function

Py := argmin
z∈S

9y− z9 (3.5)

is a well-defined linear function from L2 to S. Given any y ∈ L2, we have

1. Py ∈ S,

2. y− Py ⊥ S, and

3. Py = y if and only if y ∈ S.

7There are two small caveats I should mention. First, we actually require that S is a “closed”
linear subspace of L2, which means that if {xn} ⊂ S, x ∈ L2 and 9xn − x9 → 0, then x ∈ S. For the
subspaces we consider here, this condition is always true. Second, when we talk about uniqueness in
L2, we do not distinguish between elements x and x′ of L2 such thatP{x = x′} = 1. A nice treatment
of orthogonal projection in Hilbert spaces (of which L2 is one example) is provided in Cheney (2001,
chapter 2). Most other books covering Hilbert space will provide some discussion.
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Comparing (3.4) and (3.5), we see that y 7→ E [y | G] is exactly the orthogonal projec-
tion function P in the special case where the subspace S is the G-measurable func-
tions L2(G).

Okay, so E [y | G] is the orthogonal projection of y onto L2(G). That’s kind of neat,
but what does it actually tell us? Well, it tells us quite a lot. For starters, theo-
rem 3.3.1 implies that E [y | G] is always well defined and unique. Second, it gives
us a useful characterization of E [y | G], because we now know that E [y | G] is the
unique point in L2 such that E [y | G] ∈ L2(G) and y−E [y | G] ⊥ z for all z ∈ L2(G).
Rewriting these conditions in a slightly different way, we can give an alternative
(and equivalent) definition of conditional expectation: E [y | G] ∈ L2 is the condi-
tional expectation of y given G if

1. E [y | G] is G-measurable, and

2. E [E [y | G] z] = E [yz] for all G-measurable z ∈ L2.

This definition seems a bit formidable, but it’s not too hard to use. Before giving an
application, let’s bow to common notation and define

E [y | x1, . . . , xp] := E [y | G]

Also, let’s note the following “obvious” fact:

Fact 3.3.5. Given {x1, . . . , xp} and y in L2, there exists a function g : Rp → R such
that E [y | x1, . . . , xp] = g(x1, . . . , xp).

This is obvious because, by definition, E [y | G] is G-measurable. At the same time,
it’s worth keeping in mind: A conditional expectation with respect to a collection of
random variables is some function of those random variables.

Example 3.3.7. If x and w are independent and y = x + w, thenE [y | x] = x +E [w].

Let’s check this using the second definition of conditional expectations given above.
To check that x +E [w] is indeed the conditional expectation of y given G = {x}, we
need to show that x +E [w] is x-measurable and that E [(x +E [w]) z] = E [yz] for
all x-measurable z. The first claim is clearly true, because x +E [w] is a deterministic
function of x. The second claim translates to the claim that

E [(x +E [w])g(x)] = E [(x + w)g(x)] (3.6)
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for any function g. Verifying this equality is left as an exercise (exercise 3.4.12)

The next example shows that when x and y are linked by a conditional density (re-
member: densities don’t always exist), then our definition of conditional expectation
reduces to the one seen in elementary probability texts. The proof of the claim in the
example is the topic of exercise 3.4.17.

Example 3.3.8. If x and y are random variables and p(y | x) is the conditional density
of y given x, then

E [y | x] =
∫

tp(t | x)dt

There are some additional goodies we can harvest using the fact that conditional
expectation is an orthogonal projection.

Fact 3.3.6. Let x and y be random variables in L2, let α and β be scalars, and let G
andH be subsets of L2. The following properties hold.

1. Linearity: E [αx + βy | G] = αE [x | G] + βE [y | G].

2. If G ⊂ H, then E [E [y | H] | G] = E [y | G] and E [E [y | G]] = E [y].

3. If y is independent of the variables in G, then E [y | G] = E [y].

4. If y is G-measurable, then E [y | G] = y.

5. If x is G-measurable, then E [xy | G] = xE [y | G].

Checking of these facts is mainly left to the exercises. Most are fairly straightfor-
ward. For example, consider the claim that if y is G-measurable, then E [y | G] = y.
In other words, we are saying that if y ∈ L2(G), then y is projected into itself. This
is immediate from the last statement in theorem 3.3.1.

The fact that if G ⊂ H, thenE [E [y | H] | G] = E [y | G] is called the “tower” property
of conditional expectations (by mathematicians), or the law of iterated expectations
(by econometricians). The law follows from the property of orthogonal projections
given in fact 3.1.2 on page 88: Projecting onto the bigger subspace L2(H) and from
there onto L2(G) is the same as projecting directly onto the smaller subspace L2(G).
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3.3.4 The Vector/Matrix Case

Conditional expectations of random matrices are defined using the notion of condi-
tional expectations for scalar random variables. For example, given random matri-
ces X and Y, we set

E [Y |X] :=


E [y11 |X] E [y12 |X] · · · E [y1K |X]
E [y21 |X] E [y22 |X] · · · E [y2K |X]

...
...

...
E [yN1 |X] E [yN2 |X] · · · E [yNK |X]


where

E [ynk |X] := E [ynk | x11, . . . , x`m, . . . , xLM]

We also define
cov[x, y |Z] := E [xy′ |Z]−E [x |Z]E [y |Z]′

and
var[x |Z] := E [xx′ |Z]−E [x |Z]E [x |Z]′

Using the definitions, one can show that all of the results on conditional expectations
in fact 3.3.6 continue to hold in the current setting, replacing scalars with vectors and
matrices. We state necessary results for convenience:

Fact 3.3.7. Let X, Y and Z be random matrices, and let A and B be constant matrices.
Assuming conformability of matrix operations, the following results hold:

1. E [Y |Z]′ = E [Y′ |Z].

2. E [AX + BY |Z] = AE [X |Z] + BE [Y |Z].

3. E [E [Y |X]] = E [Y] and E [E [Y |X, Z] |X] = E [Y |X].

4. If X and Y are independent, then E [Y |X] = E [Y].

5. If g is a (nonrandom) function, so that g(X) is a matrix depending only on X,
then

• E [g(X) |X] = g(X)

• E [g(X)Y |X] = g(X)E [Y |X]
• E [Y g(X) |X] = E [Y |X] g(X)
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3.3.5 An Exercise in Conditional Expectations

Let x and y be two random variables. We saw that E [y | x] is a function f of x
such that f (x) is the best predictor of y in terms of root mean squared error. Since
monotone increasing transformations do not affect minimizers, f also minimizes the
mean squared error. In other words, f solves

min
g∈G

E [(y− g(x))2] (3.7)

where G is the set of functions from R to R. From this definition of conditional
expectations, we employed the orthogonal projection theorem to deduce various
properties of conditional expectations. We can also reverse this process, showing
directly that f (x) := E [y | x] solves (3.7), given the various properties of conditional
expectations listed in fact 3.3.6. To begin, suppose that the properties in fact 3.3.6
hold, and fix an arbitrary g ∈ G. We have

(y− g(x))2 = (y− f (x) + f (x)− g(x))2

= (y− f (x))2 + 2(y− f (x))( f (x)− g(x)) + ( f (x)− g(x))2

Let’s consider the expectation of the cross-product term. From the law of iterated
expectations (fact 3.3.6), we obtain

E {(y− f (x))( f (x)− g(x))} = E {E [(y− f (x))( f (x)− g(x)) | x] } (3.8)

We can re-write the term inside the curly brackets on the right-hand side of (3.8) as

( f (x)− g(x))E [(y− f (x)) | x]

(Which part of fact 3.3.6 are we using here?) Regarding the second term in this
product, we have (by which facts?) the result

E [y− f (x) | x] = E [y | x]−E [ f (x) | x] = E [y | x]− f (x) = E [y | x]−E [y | x] = 0

We conclude that the expectation in (3.8) is E [0] = 0. It then follows that

E [(y− g(x))2] = E [(y− f (x))2 + 2(y− f (x))( f (x)− g(x)) + ( f (x)− g(x))2]

= E [(y− f (x))2] +E [( f (x)− g(x))2]

Since ( f (x)− g(x))2 ≥ 0 we have E [( f (x)− g(x))2] ≥ 0, and we conclude that

E [(y− g(x))2] ≥ E [(y− f (x))2] :=: E [(y−E [y | x])2]

Since g was an arbitrary element of G, we conclude that

f = argmin
g∈G

E [(y− g(x))2]
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3.4 Exercises

Ex. 3.4.1. Prove the Pythagorean law in theorem 3.1.1.8

Ex. 3.4.2. Prove theorem 3.1.4 using theorems 3.1.2–3.1.3.

Ex. 3.4.3. Prove fact 3.1.4: If S ⊂ RN, then S ∩ S⊥ = {0}.

Ex. 3.4.4. Prove fact 3.1.2.

Ex. 3.4.5. Let x and y be any two N × 1 vectors.

1. Show that ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2x′y

2. Explain the connection between this equality and the Pythagorean Law.

Ex. 3.4.6. Let P be the orthogonal projection described in theorem 3.1.3 (page 86).
Confirm that P is a linear function from RN to RN, as defined in §2.1.3.

Ex. 3.4.7. Let S := {(x1, x2, x3) ∈ R3 : x3 = 0}, and let y := 1 := (1, 1, 1). Using the
orthogonal projection theorem, find the closest point in S to y.

Ex. 3.4.8. Let P be the orthogonal projection described in theorem 3.1.3 (page 86). Is
it true that Px 6= Py whenever x 6= y? Why or why not?9

Ex. 3.4.9. Show that when N × K matrix X is full column rank, the matrix X′X is
invertible.10

Ex. 3.4.10. Show by direct computation that P and M in (3.1) and (3.2) are both
symmetric and idempotent.

Ex. 3.4.11. Verify fact 3.2.2 (i.e., MX = 0) directly using matrix algebra.

Ex. 3.4.12. Show that the equality in (3.6) holds when x and w are independent.

Ex. 3.4.13. In fact 3.3.6, it is stated that if y is independent of the variables in G,
then E [y | G] = E [y]. Prove this using the (second) definition of the conditional
expectation E [y | G]. To make the proof a bit simpler, you can take G = {x}.

8Hint: See fact 2.2.1.
9Hint: Sketch the graph and think about it visually.

10Hint: This is non-trivial. In view of fact 2.3.11, it suffices to show that X′X is positive definite.
Make use of the full column rank assumption. Look at the different equivalent conditions for linear
independence of a set of vectors.
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Ex. 3.4.14. Confirm the claim in fact 3.3.6 that if x is G-measurable, then E [xy | G] =
xE [y | G].

Ex. 3.4.15. Let var[y | x] := E [y2 | x]− (E [y | x])2. Show that

var[y] = E [var[y | x]] + var[E [y | x]]

Ex. 3.4.16. Show that the conditional expectation of a constant α is α. In particular,
using the results in fact 3.3.6 (page 100) as appropriate, show that if α is a constant
and G is any information set, then E [α | G] = α.

Ex. 3.4.17. Prove the claim in example 3.3.8. (Warning: The proof is a little advanced
and you should be comfortable manipulating double integrals.)

3.4.1 Solutions to Selected Exercises

Solution to Exercise 3.4.3. Let S ⊂ RN. We aim to show that S ∩ S⊥ = {0}. Fix
a ∈ S ∩ S⊥. Since a ∈ S⊥, we know that a′s = 0 for any s ∈ S. Since a ∈ S, we have
in particular, a′a = ‖a‖2 = 0. As we saw in fact 2.1.1, the only such vector is 0.

Solution to Exercise 3.4.6. Fix α, β ∈ R and x, y ∈ RN. The claim is that

P(αx + βy) = αPx + βPy

To verify this equality, we need to show that the right-hand side is the orthogonal
projection of αx + βy onto S. Going back to theorem 3.1.2, we need to show that (i)
αPx + βPy ∈ S and (ii) for any z ∈ S, we have

(αx + βy− (αPx + βPy))′z = 0

Here (i) is immediate, because Px and Py are in S by definition; and, moreover S is
a linear subspace. To see that (ii) holds, just note that

(αx + βy− (αPx + βPy))′z = α(x− Px)′z + β(y− Py)′z

By definition, the projections of x and y are orthogonal to S, so we have (x−Px)′z =

(y− Py)′z = 0. We are done.
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Solution to Exercise 3.4.7. Let x = (x1, x2, x3) be the closest point in S to y. Note
that e1 ∈ S and e2 ∈ S. By the orthogonal projection theorem we have (i) x ∈ S, and
(ii) y− x ⊥ S. From (i) we have x3 = 0. From (ii) we have

〈y− x, e1〉 = 0 and 〈y− x, e2〉 = 0

These equations can be expressed more simply as 1− x1 = 0 and 1− x2 = 0. We
conclude that x = (1, 1, 0).

Solution to Exercise 3.4.8. It is false to say that Px 6= Py whenever x 6= y: We can
find examples of vectors x and y such that x 6= y but Px = Py. Indeed, if we fix any
y and then set x = Py + αMy for some constant α, you should be able to confirm
that Px = Py, and also that x 6= y when α 6= 1.

Solution to Exercise 3.4.9. Let A = X′X. It suffices to show that A is positive defi-
nite, since this implies that its determinant is strictly positive, and any matrix with
nonzero determinant is invertible. To see that A is positive definite, pick any b 6= 0.
We must show that b′Ab > 0. To see this, observe that

b′Ab = b′X′Xb = (Xb)′Xb = ‖Xb‖2

By the properties of norms, this last term is zero only when Xb = 0. But this is not
true, because b 6= 0 and X is full column rank (see fact 2.2.4, part 5).

Solution to Exercise 3.4.12. Let g be any function from R → R. Given indepen-
dence of x and w (and applying fact 1.3.2 on page 27), we have

E [(x +E [w])g(x)] = E [xg(x)] +E [w]E [g(x)]

= E [xg(x)] +E [wg(x)]

= E [(x + w)g(x)]

This confirms (3.6).

Solution to Exercise 3.4.13. Let y be independent of x. From the (second) definition
of conditional expectation, to show that E [y | x] = E [y] we need to show that

1. E [y] is G-measurable, and

2. E [E [y]g(x)] = E [yg(x)] for any function g : R→ R.
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Part 1 is immediate, becauseE [y] is constant (see example 3.3.5 on page 96). Regard-
ing part 2, if g is any function, then by facts 1.3.1 and 1.3.2 (see page 27) we have
E [yg(x)] = E [y]E [g(x)]. By linearity of expectations,E [y]E [g(x)] = E [E [y]g(x)].

Solution to Exercise 3.4.14. We need to show that if x is G-measurable, thenE [xy | G] =
xE [y | G]. To confirm this, we must show that

1. xE [y | G] is G-measurable, and

2. E [xE [y | G]z] = E [xyz] for any z ∈ L2(G).

Regarding part 1, E [y | G] is G-measurable by definition, and x is G-measurable by
assumption, so xE [y | G] is G-measurable by fact 3.3.1 on page 96. Regarding part
2, fix z ∈ L2(G), and let u := xz. Since x ∈ L2(G), we have u ∈ L2(G). We need to
show that

E [E [y | G]u] = E [yu]

Since u ∈ L2(G), this is immediate from the definition of E [y | G].

Solution to Exercise 3.4.16. By fact 3.3.6 (page 100), we know that if α is G-measurable,
then E [α | G] = α. Example 3.3.5 on page 96 tells us that α is indeed G-measurable.

Solution to Exercise 3.4.17. As in example 3.3.8, let x and y be random variables
where p(y | x) is the conditional density of y given x. Let g(x) :=

∫
tp(t | x)dt.

The claim is that E [y | x] = g(x). To prove this, we need to show that g(x) is x-
measurable, and that

E [g(x)h(x)] = E [yh(x)] for any function h : R→ R (3.9)

The first claim is obvious. Regarding (3.9), let h be any such function. Using the
notation in (1.20) on page 26, we can write

E [g(x)h(x)] = E

[∫
tp(t | x)dt h(x)

]
=
∫ ∫

tp(t | s)dt h(s)p(s)ds

=
∫ ∫

t
p(s, t)
p(s)

dt h(s)p(s)ds

=
∫ ∫

t h(s)p(s, t)dtds

This is equal to the right-hand side of (3.9), and the proof is done.
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Chapter 4

Statistical Learning

Econometrics is just statistics applied to economic problems—nothing more and
nothing less. We should probably call it “statistical economics,” but I guess peo-
ple feel that the term “econometrics” has a better ring to it. The only cost of using
the term “econometrics” is that we are sometimes fooled into thinking that we work
on a distinct discipline, separate from statistics. This is not true.

The next two chapters provides a short, concise review of the foundations of mod-
ern statistics, including parametric and nonparametric methods, empirical distribu-
tions, hypothesis testing and confidence intervals.

4.1 Inductive Learning

In the modern world we have lots of data, but still lack fundamental knowledge
on how many systems work, or how different economic variables are related to one
another. What then is the process of extracting knowledge from data? Under what
conditions will this process be successful?

4.1.1 Generalization

The fundamental problem of statistics is learning from data. Learning from data
concerns generalization. A finite set of data is observed, and, on the basis of this data,
one seeks to make more general statements. For example, suppose that a certain
drug is tested on 1,000 volunteers, and found to produce the desired effect in 95%
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of cases. On the basis of this study, the drug company claims that the drug is highly
effective. The implication of their claim is that we can generalize to the wider popu-
lation. The interest is not so much in what happened to the volunteers themselves,
but rather on what the outcome for the volunteers implies for other people.

Another word for generalization is induction. Inductive learning is where reasoning
proceeds from the specific to the general—as opposed to deductive learning, which
proceeds from general to specific.

Example 4.1.1. You show a child pictures of dogs in a book and say ’dog’. After a
while, the child sees a dog on the street and says ’dog’. The child has generalized
from specific examples. Hence, the learning is inductive. If, on the other hand, you
had told the child that dogs are hairy, four legged animals that stick their tongues
out when hot, and the child determined the creature was a dog on this basis, then
the nature of the learning process could be called deductive.

Here are some typical statistical problems, phrased in more mathematical language:

Example 4.1.2. N random values x1, . . . , xN are drawn from a given but unknown
cdf F. We wish to learn about F from this sample.

Example 4.1.3. Same as example 4.1.2, but now we only care about learning the
mean of F—or the standard deviation, or the median, etc.

Example 4.1.4 (Regression). We observe “inputs” x1, . . . , xN to some “system,” as
well as the corresponding “outputs” y1, . . . , yN. Given this data, we wish to compute
a function f such that, given a new input/output pair (x, y), the value f (x) will be
a good guess of the corresponding output y. (Here we imagine that y is observed
after x or not at all, and hence the need to predict y from x.)

In these examples, the problem lies in the fact that we do not know the underlying
distributions. If, in example 4.1.4, we knew the joint distribution of (x, y) pairs, then
we could work out the conditional expectation E [y | x]. As we’ll see in §3.3.3, there
is a natural sense in which the conditional expectation is the best predictor of y given
x. In statistical applications, however, we don’t know the distributions. All we have
is the observations. We must do the best we can given the information contained in
this sample.
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Figure 4.1: Generalization requires knowledge

4.1.2 Data is not Enough

As a rule, statistical learning requires more than just data. Ideally, data is com-
bined with a theoretical model that encapsulates our knowledge of the system we
are studying. The data is often used to pin down parameter values for the model.
This is called fitting the model to the data. If our model is good, then combining
model with data allows to gain an understanding of how the system works.

Even when we have no formal model of how the system works, we still need to
combine the data with some assumptions in order to generalize. Figure 4.1 helps to
illustrate this idea. Consider the regression setting of example 4.1.4, and suppose
we observe the blue dots as our data. Now make a subjective guess as to the likely
value of the output, given that the input value is 0.8. Was your guess something like
the red dot in Figure 4.2? It looks reasonable to me too.

But why does it look reasonable? Because our brain picks up a pattern: The blue
dots lie roughly on a straight line. We instictively predict that the red dot will lie
on the same line, or at least we feel it would be natural for that to occur. One way
or another, our brains have been trained (or are hard-wired?) to think in straight
lines. And even though this thought process is subconscious, in the end what we
are doing is bringing our own assumptions into play.
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Figure 4.2: Generalization requires knowledge

Obviously our assumption about the linear relationship could be completely wrong.
After all, we haven’t even talked about the kind of system we are observing here.
Maybe the functional relationship between inputs and outputs is totally different
to what we perceived from these few data points. Ideally, our assumptions should
be based on sound theory and understanding of the system we are studying, rather
than some subconscious feeling that straight lines are most likely.1

Either way, regardless of the process that led to our assumptions, the point is that
we cannot forecast the new observation from the data alone. We have to make some as-
sumptions as to the functional relationship in order to come up with a guess of
likely output given input 0.8. Those assumptions may come from knowledge of the
system, or they may come from subconscious preference for straight lines. Either
way, we are adding something to the data in order to make inference about likely
outcomes.

If the assumptions we add to the data are to some extent correct, this injection of
prior knowledge into the learning process allows us to generalize from the observed

1In 1929, the economist Irving Fisher famously declared that “Stocks have reached what looks like
a permanently high plateau.” Perhaps Dr Fisher based his projection on subconscious attraction to
straight lines, rather than some deeper understanding of the underlying forces generating the time
series of equity prices he observed.

JOHN STACHURSKI January 10, 2014



4.2. STATISTICS 112

data points. Thus, roughly speaking, the rule is

statistical learning = prior knowledge + data

4.2 Statistics

“Statistics” sounds like an odd name for a section. Isn’t this whole course about
statistics? Yes, sure it is, but here we’re using the term statistic with a special mean-
ing. Specifically, a statistic is any function of a given data set. To repeat:

• A statistic is an observable function of the sample data.

For example, suppose that we have data x1, . . . , xN, which might represent the price
of a Big Mac in N different countries, or the closing price of one share in Google over
N consecutive days. Common statistics used to summarize the data are the sample
mean

x̄N :=: x̄ :=
1
N

N

∑
n=1

xn

the sample variance

s2
N :=: s2 :=

1
N − 1

N

∑
n=1

(xn − x̄)2 (4.1)

and the sample standard deviation

sN :=: s :=
√

s2 =

[
1

N − 1

N

∑
n=1

(xn − x̄)2

]1/2

(4.2)

For positive integer k, the sample k-th moment is given by

1
N

N

∑
n=1

xk
n

If we have bivariate data (x1, y1), . . . , (xN, yN), then the sample covariance is

1
N − 1

N

∑
n=1

(xn − x̄)(yn − ȳ) (4.3)
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and the sample correlation is the sample covariance divided by the product of the
two sample standard deviations. With some rearranging, this becomes

∑N
n=1(xn − x̄)(yn − ȳ)√

∑N
n=1(xn − x̄)2 ∑N

n=1(yn − ȳ)2
(4.4)

R has functions for all of these common statistics. The sample mean, sample vari-
ance and sample standard deviation are calculated using the functions mean, var
and sd respectively. Sample covariance and sample correlation can be computed
using cov and cor:

> x <- rnorm (10)

> y <- rnorm (10)

> cov(x, y)

[1] 0.001906421

> cor(x, y)

[1] 0.004054976

Perhaps the most important thing to remember about statistics is that, being func-
tions of the sample, they are also random variables. This might not be clear, since, we
tend to think of the data as a fixed set of numbers in a file on our hard disk, deter-
mined by some previous historical outcome. Statistics are deterministic functions of
these numbers, and we only observe one value of any particular statistic—one sam-
ple mean, one sample variance, etc. However, the way that statisticians think about
it is that they imagine designing the statistical exercise prior to observing the data. At
this stage, the data is regarded as a collection of random variables—even though
these variables may have been previously determined in some historical data set.
Hence, each statistic is also a random quantity (i.e., random variable).

More formally, if we look at the sample mean, for example, when we write x̄N :=
N−1 ∑N

n=1 xn, what we actually mean is

x̄N(ω) :=
1
N

N

∑
n=1

xn(ω) (ω ∈ Ω) (4.5)

Hence x̄N is a function from Ω→ R. Put differently, x̄N is a random variable.

Being random variables, statistics have expectations, variances and so on. For exam-
ple, consider the sample mean x̄ := N−1 ∑n xn of an identically distributed sample.
Each observation xn is drawn from some fixed distribution F with unknown mean

JOHN STACHURSKI January 10, 2014



4.2. STATISTICS 114

µ. In that case, the mean of x̄ is also µ, because, from linearity of expectations,

E [x̄] = E

[
1
N

N

∑
n=1

xn

]
=

1
N

N

∑
n=1

E [xn] = µ (4.6)

Since we don’t actually know what µ is, this result might not seem very helpful, but
it is: It tells us that x̄ is a useful predictor of the unknown quantity µ, in the sense
that it’s “most likely” outcome is this unknown quantity. We say that x̄ is unbiased
for µ. The next session discusses this and other properties of estimators.

4.2.1 Vector Statistics

Statistics can be vector valued, or even matrix valued. For example, if x1, . . . , xN are
random vectors of equal length, then the sample mean is the random vector defined
by

x̄ :=
1
N

N

∑
n=1

xn

and the sample variance-covariance matrix is defined as

Q :=
1

N − 1

N

∑
n=1

[(xn − x̄)(xn − x̄)′] (4.7)

In R, the sample variance-covariance matrix is obtained using cov, which acts on
matrices. In relation to Q in (4.7), the observed vectors x1, . . . , xN are treated as row
vectors of the matrix. This is a standard convention in statistics: rows of a matrix are
observations of a random vector. Hence, to obtain the sample variance covariance
matrix Q of observations x1, x2, x3, we stack them into rows and use cov:

> cov(rbind(x1, x3, x2))

More commonly, we will be working with a data matrix X where the rows are obser-
vations, and we can just use cov(X).

4.2.2 Estimators and their Properties

Estimators are just statistics—that is, functions of the data. However, when we
talk about estimators, we have in mind the idea of estimating a specific quantity
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of interest. In other words, to discuss an estimator, we need to also specify what
it is we’re trying to estimate. For example, suppose we wish to estimate the mean
µ :=

∫
s F(ds) of F given observations x1, . . . , xN from F. A common way to do

this is to use the sample mean x̄ of the observations x1, . . . , xN. In this setting, x̄ is
regarded as an estimator of µ.

In any given problem, there are always many estimators we can use. For example,
when estimating the mean in the preceding problem we can also use the so-called
mid-range estimator

mN :=
minn xn + maxn xn

2
Which is better, the sample mean or the mid-range estimator?

More generally, let us consider the problem of what makes a good estimator. Not
surprisingly, that depends on how you define “good.” To begin the discussion, first
we collect some terminology. Let θ̂ be an estimator of θ. The bias of θ̂ is defined as

bias[θ̂] := E [θ̂]− θ (4.8)

The estimator θ̂ is called unbiased for θ if its bias is zero, or E [θ̂] = θ. The mean
squared error of a given estimator θ̂ of some fixed quantity θ is

mse[θ̂] := E [(θ̂ − θ)2] (4.9)

Low mean squared error means that probability mass is concentrated around θ.2

Example 4.2.1. As we saw in (4.6), if x1, . . . , xN is identically distributed, then the
sample mean x̄ is always an unbiased estimator of the mean. As a result, the mean
squared error of x̄ is equal to the variance. If, in addition, the random variables
x1, . . . , xN in question are uncorrelated, then the variance of x̄ is

var[x̄] = var

[
1
N

N

∑
n=1

xn

]
=

σ2

N
(4.10)

where σ2 :=
∫
(s− θ)2F(ds) is the common variance of each xn.

Example 4.2.2. For an IID sample, the sample variance s2 is an unbiased estimator
of the variance (exercise 4.7.2).

2In the definition of mean squared error, we are implicitly assuming that the expression on the
right hand side of (4.9) is finite. This may not be true for certain estimators, simply because the
second moment of the estimator = ∞.
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Figure 4.3: Unbiased estimators

Example 4.2.3. The mid-range estimator mN may be biased as an estimator of the
mean of a distribution, depending on the distribution in question. Bias in the log-
normal case is illustrated in the following simulation:

> mr <- function(x) return ((min(x) + max(x)) / 2)

> observations <- replicate (5000 , mr(rlnorm (20)))

> mean(observations) # Sample mean of mid -range

[1] 3.800108

> exp(1/2) # Mean of lognormal

[1] 1.648721

By the LLN, the sample mean of mN is close to E [mN]. This is clearly a long way
from the mean of the lognormal density.

For an unbiased estimator θ̂, low variance is desirable. Low variance means that
probability mass for the random variable θ̂ is concentrated around its mean (see
figure 4.3). This is precisely what we want, since the mean of an unbiased estimator
is the quantity θ that we wish to estimate.

One issue here is that low variance is a bit hard to quantify. For example, consider
the variance of the sample mean, as given in (4.10). Is that low or is it not? One
way to approach this kind of question is to take the class of unbiased estimators of
a given quantity θ, and find the estimator in the class with the lowest variance. For
given θ and given data x1, . . . , xN, the estimator in the set of unbiased estimators

Uθ := {all statistics θ̂ with E [θ̂] = θ}

that has the lowest variance within this class (i.e., set) is called the minimum vari-
ance unbiased estimator.

JOHN STACHURSKI January 10, 2014



4.2. STATISTICS 117

While minimum variance unbiased estimators are nice in theory, it’s certainly pos-
sible that no minimizer exists. Second, even if such an estimator does exist in this
class, it may be hard to determine in practice. Hence, there is a tendency to focus on
smaller classes than Uθ, and find the best estimator in that class. For example, the
estimator in the set of linear unbiased estimators

U`
θ := {all linear statistics θ̂ with E [θ̂] = θ}

with the lowest variance—if it exists—is called the best linear unbiased estima-
tor, or BLUE. Here “linear” means that θ̂ is a linear function of the data x1, . . . , xN.
Linearity will be defined formally in §2.1.3. For now let’s just look at an example.

Example 4.2.4. Let x1, . . . , xN
IID∼ F, where F has finite mean µ 6= 0 and variance σ2.

Take it on trust for now that the set of linear estimators of µ is given by{
all statistics of the form µ̂ =

N

∑
n=1

αnxn, where αn ∈ R for n = 1, . . . , N

}
Hence, the set linear unbiased estimators of µ is given by

U`
µ :=

{
all µ̂ =

N

∑
n=1

αnxn with αn ∈ R, n = 1, . . . , N and E

[
N

∑
n=1

αnxn

]
= µ

}
Using linearity of expectations, we see that this set can be re-written as

U`
µ :=

{
all µ̂ =

N

∑
n=1

αnxn with
N

∑
n=1

αn = 1

}
By fact 1.3.9 on page 28, the variance of an element of this class is given by

var

[
N

∑
n=1

αnxn

]
=

N

∑
n=1

α2
n var[xn] + 2 ∑

n<m
αnαm cov[xn, xm] = σ2

N

∑
n=1

α2
n

where the last equality is due to independence. To find the BLUE, we need to solve

minimize σ2
N

∑
n=1

α2
n over all α1, . . . , αN with

N

∑
n=1

αn = 1

To solve this constrained optimization problem, we can use the Lagrangian, setting

L(α1, . . . , αN; λ) := σ2
N

∑
n=1

α2
n − λ

[
N

∑
n=1

αn − 1

]
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Figure 4.4: Biased and unbiased estimators

where λ is the Lagrange multiplier. Differentiating with respect to αn and setting
the result equal to zero, the minimizer α∗n satisfies

α∗n = λ/(2σ2) n = 1, . . . , N

In particular, each α∗n takes the same value, and hence, from the constraint ∑n α∗n = 1,
we have α∗n = 1/N. Using these values, our estimator becomes

N

∑
n=1

α∗nxn =
N

∑
n=1

(1/N)xn = x̄

We conclude that, under our assumptions, the sample mean is the best linear unbi-
ased estimator of µ.

Returning to the general case, note that while classical statistics puts much emphasis
on unbiased estimators, in recent years the use of biased estimators has become
very common. To understand why, it’s important to bear in mind that what we
seek is an estimator of θ that is close to θ with high probability, and far away with
low probability. In this sense, an unbiased estimator is not necessarily better than
a biased one. For example, consider the two estimators θ̂1 and θ̂2 of θ depicted
figure 4.4. The unbiased estimator θ̂1 has higher variance than the biased estimator
θ̂2, and it is not clear that its performance will be better.

An overall measure of performance that takes into account both bias and variance is
mean squared error, as defined in (4.9). Indeed, we can (exercise 4.7.1) decompose
mean squared error into the sum of variance and squared bias:

mse[θ̂] = var[θ̂] + bias[θ̂]2 (4.11)

In many situations we find a trade-off between bias and variance: We can lower
variance at the cost of extra bias and vice-versa.
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4.2.3 Asymptotic Properties

Notice in (4.10) how, under the IID assumption, the variance of the sample mean
converges to zero in N. Since the sample mean is unbiased for the mean, this sug-
gests that in the limit, all probability mass concentrates on the mean—which is the
value that the sample mean seeks to estimate. This is a useful piece of information.
In order to formalize it, as well as generalize to other estimators, let’s now consider
asymptotic properties.

Let θ̂N be an estimator of a quantity θ ∈ R, where N denotes the size of the sample
from which θ̂N is constructed. We say that θ̂N is

• asymptotically unbiased for θ if E [θ̂N]→ θ as N → ∞

• consistent for θ if θ̂N
p→ θ as N → ∞

• asymptotically normal if
√

N(θ̂N − θ)
d→ N (0, v(θ)) for some v(θ) > 0.

In the last definition, v(θ) is called the asymptotic variance of θ̂N.

All of these properties are desirable. The desirability of asymptotic normality is
somewhat less obvious than that of consistency, but asymptotic normality is impor-
tant for two reasons. First, it provides a means of forming confidence intervals and
hypothesis tests, as explained in chapter 5. Second, it gives us an idea of the rate of
convergence of θ̂N to θ. To see this, observe that if θ̂N is asymptotically normal, then√

N(θ̂N − θ) does not diverge to infinity. This means that the term θ̂N − θ goes to
zero at least fast enough to offset the diverging term

√
N. To emphasize this point,

we sometimes say that an asymptotically normal estimator θ̂N is
√

N-consistent.

Example 4.2.5. The sample mean x̄N of any identically distributed sample is asymp-
totically unbiased for the common mean µ because it is unbiased. If the random
variables x1, . . . , xN in the sample are also independent, then we can apply the law
of large numbers, which implies that x̄N is consistent for µ (see (1.26) on page 34).
If, in addition, E [x2

n] < ∞, then we can also apply the central limit theorem, which
implies that x̄N is asymptotically normal (see (1.29) on page 36).

Example 4.2.6. As another example of consistency, let’s consider the sample stan-
dard deviation sN = s defined in (4.2). Let x1, . . . , xN be an IID sample as before,
with each xn having mean µ, variance σ2 and standard deviation σ =

√
σ2. Fact 1.4.1

on page 31 tells us that if g is continuous and s2
N

p→ σ2, then g(s2
N)

p→ g(σ2). Taking
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g(x) =
√

x, we see that if s2
N

p→ σ2, then sN =
√

s2
N

p→
√

σ2 = σ, which is what we

want to show. Hence it suffices to prove that s2
N

p→ σ2. To see that this is the case,
note that

s2
N =

1
N − 1

N

∑
n=1

(xn − x̄N)
2 =

N
N − 1

1
N

N

∑
n=1

(xn − x̄N)
2

=
N

N − 1
1
N

N

∑
n=1

[(xn − µ)− (x̄N − µ)]2

Expanding out the square, we get

s2
N =

N
N − 1

[
1
N

N

∑
n=1

(xn − µ)2 − 2
1
N

N

∑
n=1

(xn − µ)(x̄N − µ) + (x̄N − µ)2

]

=
N

N − 1

[
1
N

N

∑
n=1

(xn − µ)2 − (x̄N − µ)2

]

By the law of large numbers,

1
N

N

∑
n=1

(xn − µ)2 p→ σ2 and (µ− x̄N)
p→ 0

Applying the various results in fact 1.4.1 (page 31), we then have

s2
N =

N
N − 1

[
1
N

N

∑
n=1

(xn − µ)2 − (µ− x̄N)
2

]
p→ 1× [σ2 − 0] = σ2

Hence the sample variance and sample standard deviation are consistent estimators
of the variance and standard deviation respectively.

4.3 Maximum Likelihood

How does one come up with an estimator having nice properties, such as unbi-
asedness, consistency, etc.? Sometimes we can just use intuition. For example, it’s
natural to use the sample mean to estimate the mean of a random variable. In more
complicated settings, however, more systematic approaches are required. One such
approach is the celebrated principle of maximum likelihood.
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x1 γ

N (x1, 1) N (γ, 1)

Figure 4.5: Maximizing the likelihood

4.3.1 The Idea

To motivate the methodology, suppose I present you with a single draw x1 from
distributionN (µ, 1), where the µ is unknown, and the standard deviation is known
and equal to one for simplicity. Your job is to make a guess µ̂ of the mean µ of
the distribution, given the observation x1. Since a guess µ̂ of µ also pins down
the distribution N (µ̂, 1), we could equivalently say that your job is to guess the
distribution that generated the observation x1.

In guessing this distribution, if we centered it around some number γ much larger
than x1, then our observed data point x1 would be an “unlikely” outcome for this
distribution. See figure 4.5. The same logic would apply if we centered the density at
a point much smaller than x1.3 In fact, in the absence of any additional information,
the most obvious guess would be that the normal density is centered on x1. To center
the density on x1, we must choose the mean to be x1. In other words, our guess of µ

is µ̂ = x1.

Maximum likelihood leads to the same conclusion. The density of x1 is

p(s; µ) := (2π)−1/2 exp
{
− (s− µ)2

2

}
(s ∈ R)

Consider plugging the observed value x1 into this density:

p(x1; µ) = (2π)−1/2 exp
{
− (x1 − µ)2

2

}
Even though were dealing with a continuous random variable here, let’s think of
p(x1; µ) as representing the “probability” of realizing our sample point x1. The prin-
ciple of maximum likelihood suggests that we take as our guess µ̂ of µ the value that

3Given that our distribution can be represented by a density, all individual outcomes s ∈ R have
probability zero, and in this sense, all outcomes are equally unlikely. What’s meant by the statement
about x1 being relatively “unlikely” is that there is little probability mass in the neighborhood of x1.
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maximizes this probability. In some sense, this is the “most likely” µ given the sam-
ple. A little thought will convince you that µ̂ = x1 is the maximizer. That is,

µ̂ = x1 = argmax
−∞<µ<∞

p(x1; µ)

This coincides with our intuitive discussion regarding figure 4.5.

The same principle applies when we have x1, . . . , xN
IID∼ N (µ, 1), where µ is un-

known. By independence, the joint density of this sample is obtained as the product
of the marginal densities. Plugging the sample values into the joint density, one then
maximizes the joint density with respect to µ. The maximizer

µ̂ := argmax
−∞<µ<∞

(2π)−N/2
N

∏
n=1

exp
{
− (xn − µ)2

2

}
(4.12)

is called the maximum likelihood estimate. As you are asked to show in exer-
cise 4.7.4, the maximizer µ̂ is precisely the sample mean of x1, . . . , xN.

We can generalize these ideas in several ways. Let’s suppose now that the data
x1, . . . , xN has joint density p in the sense of (1.19). We will assume that p = p(·; θ)

is known up to a vector of parameters θ ∈ Θ ⊂ RK. In other words, the functional
form of p is known, and each choice of θ pins down a particular density p = p(·; θ),
but the value of θ in the density p(·; θ) that generated the data is unknown. In
this setting, the likelihood function is p evaluated at the sample x1, . . . , xN, and
regarded as a function of θ:

L(θ) := p(x1, . . . , xN; θ) (θ ∈ Θ) (4.13)

The principle of maximum likelihood tells us to estimate θ using the maximizer of
L(θ) over θ ∈ Θ. Alternatively, we can maximize the log likelihood function (see
§13.2), defined as the log of L:

`(θ) := ln(L(θ)) (θ ∈ Θ)

The maximum likelihood estimate (MLE) θ̂ is the maximizer of L(θ), or, equiva-
lently, of `(θ):

θ̂ := argmax
θ∈Θ

L(θ) = argmax
θ∈Θ

`(θ) (4.14)

(In the preceding discussion, p was a density function, but it can be a probability
mass function as well. Exercise 4.7.6 treats one example.)
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To implement this method, we obviously need to know the joint density p of the
data. As we saw in (4.12), when the data points are independent this is easy because
the joint density p is the product of the marginals. More generally, if each xn is
drawn independently from fixed arbitrary (marginal) density pn(·; θ) on R, then

L(θ) =
N

∏
n=1

pn(xn; θ) and `(θ) =
N

∑
n=1

ln pn(xn; θ) (4.15)

4.3.2 Conditional Maximum Likelihood

In many statistical problems we wish to learn about the relationship between one
or more “input” variables and an “output” or “response” variable y. (See exam-
ple 4.1.4 on page 109.) In the case of scalar input, we observe inputs x1, . . . , xN and
corresponding outputs y1, . . . , yN. Given this data, we wish to estimate the relation-
ship between x and y. For the following theoretical discussion, we suppose that the
pairs (xn, yn) are independent of each other and share a common density p:

P{xn ≤ s̄, yn ≤ t̄} =
∫ t̄

−∞

∫ s̄

−∞
p(s, t) dsdt for all s̄, t̄ ∈ R

Let’s suppose that in investigating the relationship between x and y, we have de-
cided that the conditional density of y given x has the form fθ(y|x), where θ ∈ Θ is
a vector of parameters. How can we choose θ by maximum likelihood?

The principle of maximum likelihood tells us to maximize the log likelihood func-
tion formed from the joint density of the sample, which in this case is

`(θ) =
N

∑
n=1

ln p(xn, yn)

Letting g be the marginal density of x, we can use the decomposition (1.21) on
page 26 to write p(s, t) = fθ(t | s)g(s), and re-express the log likelihood as

`(θ) =
N

∑
n=1

ln[ fθ(yn|xn)g(xn)]

Since the function g enters into this expression, it might seem like we need to specify
the marginal distribution of x in order to maximize `. However, if g is not a function
of θ then this is unnecessary, since

N

∑
n=1

ln[ fθ(yn|xn)g(xn)] =
N

∑
n=1

ln fθ(yn|xn) +
N

∑
n=1

ln g(xn)
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By assumption, the second term is independent of θ, and as such it does not affect
the maximizer. As a result, the MLE is

argmax
θ∈Θ

N

∑
n=1

ln fθ(yn|xn)

The term ∑N
n=1 ln fθ(yn|xn) is formally referred to as the conditional log likelihood,

but in applications most people just call it the log likelihood.

Example 4.3.1. Consider a binary response model with scalar input x. To be con-
crete, we will imagine that binary (i.e., Bernoulli) random variables y1, . . . , yN indi-
cate whether or not a sample of married women participate in the labor force. We
believe that the decision yn of the n-th individual is influenced by a variable xn mea-
suring income from the rest of the household (e.g., the salary of their spouse). Let
q(s) be the probability that y = 1 (indicates participation) when x = s. Often this is
modelled by taking q(s) = F(θs), where θ is an unknown parameter and F is a cdf.
We can then write

P{y = t | x = s} = F(θs)t(1− F(θs))1−t for s ∈ R and t ∈ {0, 1}

Taking this expression as the conditional density of y given x, the (conditional) log
likelihood is therefore

`(θ) =
N

∑
n=1

ln[F(θxn)
yn(1− F(θxn))

1−yn ]

=
N

∑
n=1

yn ln F(θxn) +
N

∑
n=1

(1− yn) ln(1− F(θxn))

If F is the standard normal cdf, then the binary response model is called the probit
model. If F is the logistic cdf F(s) = 1/(1− e−s), then it’s called the logit model.4

4.3.3 Comments on Maximum Likelihood

Let’s finish with some general comments on maximum likelihood. Maximum like-
lihood theory formed the cornerstone of early to mid 20th Century statistics. An-
alyzed by a series of brilliant statisticians, maximum likelihood estimators were

4To find the MLE, we can differentiate ` with respect to θ to obtain the first order condition, but
there is no analytical solution for either the probit or logit case. Instead, numerical optimization
is required. However, ` can be shown to be concave on R, which means that most hill climbing
algorithms will converge to the global maximum. Some discussion of numerical optimization is
given in §8.3.3.
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shown to be good estimators under a variety of different criteria. For example, un-
der a bunch of regularity conditions that we won’t delve into, MLEs are

1. consistent,
2. asymptotically normal, and
3. have small variance, at least asymptotically.

These results are genuinely remarkable. For details, see, for example, Dasgupta
(2008, chapter 16).

In the last several decades, however, many statisticians have become increasingly
dissatisfied with the limitations of maximum likelihood, and other approaches have
become more popular. The most important criticism of maximum likelihood is that
the statistician must bring a lot of knowledge to the table in order to form an esti-
mator. If we look at (4.14), we see that to determine the MLE we must first specify
the likelihood function L, which in turn requires the joint distribution of the sample
as a function of θ. Thus, to pin down the MLE we need to know the parametric
class of the density from which the sample was drawn. All of the nice properties of
the MLE mentioned above are entirely dependent correct specification of the joint
distribution. This is a very big caveat indeed.

Discussion of these issues continues in §4.4.

4.4 Parametric vs Nonparametric Estimation

[roadmap]

4.4.1 Classes of Distributions

We used the terminology “parametric class” in the preceding discussion. Consider,
for example, the set D of all normal densities. That is,

D :=
{

all p s.t. p(s; µ, σ) = (2πσ2)−1/2 exp
{
− (s− µ)2

2σ2

}
, µ ∈ R, σ > 0

}
The set D is an example of a parametric class. In this case the parametric class is
the set of all normal densities p that can be formed by different choices of µ and σ.
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The parameters are µ and σ, and a particular choice of the parameters determines
(parameterizes) an element of the class D.

More generally, a parametric class of densities

D := {pθ}θ∈Θ :=: {pθ : θ ∈ Θ}

is a set of densities pθ indexed by a vector of parameters θ ∈ Θ ⊂ RK. In the pre-
vious example, θ = (µ, σ), and Θ ⊂ R2. Not all classes of densities are parametric,
however. For example, consider the set D′ of all densities p with finite second mo-
ment. In other words,

D′ :=
{

all p : R→ R s.t. p ≥ 0,
∫

p(s)ds = 1,
∫

s2p(s)ds < ∞
}

This is a large set of densities that cannot be expressed as a parametric class. In such
cases, we say that the class of densities is nonparametric.

Classical methods of inference such as maximum likelihood are parametric in na-
ture. In this setting, we typically assume that:

• The data is generated by an unknown density.
• The density belongs to parametric class D = {pθ}θ∈Θ.
• We know the class, but θ ∈ Θ is unknown.

Nonparametric statistical techniques assume instead that the unknown density is in
some nonparametric class of densities. Often this class will be very broad. It may
even be the set of all densities.

4.4.2 Parametric Estimation

To understand the difference between parametric and nonparametric estimation,
let’s look at an extended example. In the example, we let f be a density that is a
mixture of two normals. In particular,

f (s) :=
1
2
(2π)−1/2 exp

{
− (s + 1)2

2

}
+

1
2
(2π)−1/2 exp

{
− (s− 1)2

2

}
(4.16)

To understand the density f , suppose that we flip a fair coin. If we get heads then
we draw x fromN (−1, 1). If we get tails then we draw x fromN (1, 1). The random
variable x then has density f . A plot of f is given in figure 4.6.
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Figure 4.6: The true density f

Now consider an econometrician who does not know f , but has instead access to an
IID sample x1, . . . , xN from f . His (or her) objective is to estimate the whole density
f , based on the sample. Assuming that he is trained in traditional econometrics/s-
tatistics, his instinct will be to choose a particular parametric class for f , and then
estimate the parameters in order to pin down a particular density in that class.

Let’s suppose that, not having any particular pointers from theory as to the nature
of the distribution, our econometrician decides in the end to model the density as
being normally distributed. In other words, he makes the assumption that f ∈ D,
where D is the class of normal densities, as defined above.

He now wants to form an estimator f̂ ∈ D of f , based on the data. This involves de-
termining two parameters, µ and σ. He does this in the obvious way: He estimates
µ via µ̂ := x̄, the sample mean, and σ via σ̂ := s, the sample standard deviation.
Plugging these into the density, his estimate becomes f̂ (s) := p(s; µ̂, σ̂), where p is
the normal density.

Let’s generate 200 independent observations x1, . . . , x200 from f and see how this
procedure goes. The estimator f̂ of f proposed by our econometrician is the black
density in figure 4.7. The density is superimposed over the histogram and the orig-
inal true density f (in blue).

Let’s now consider whether f̂ a is good estimator of f . On balance, one would
probably have to say no. Even though the fit in figure 4.7 (i.e., the deviation between
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Figure 4.7: Estimate f̂ (black line) and true f (blue line)

the black and blue lines) might be thought of as reasonable, the estimator f̂ does not
have good properties. In particular, f̂ will not converge to f as the sample size
goes to infinity.5 The problem is the mistaken original assumption that f ∈ D.
There is no element of D that can approximate f well. We can see this by rerunning the
simulation with ten times more observations (2,000 instead of 200). The result is
given in figure 4.8. As expected, the fit is not much better.

4.4.3 Nonparametric Kernel Density Estimation

Let’s now look at a standard nonparametric approach to the same problem. Our
next econometrician is in the same position as the econometrician in the previous
section: IID data x1, . . . , xN is generated from the density f in (4.16) and presented
to her. She does not have knowledge of f , and seeks to construct a estimate f̂ of f
on the basis of the data. Unlike the previous econometrician, however, she does not
presume to know the parametric class that the density f belongs to. How can she
proceed?

5In general, one would say that f̂ is not consistent. I haven’t used this terminology, because consis-
tency was defined for real-valued estimators, not function-valued estimators like f̂ . However, one can
define a notion of convergence in probability for functions, and then give a definition of consistency
that applies here. See any advanced text on density estimation.
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Figure 4.8: Sample size = 2,000

One approach to estimating f without making assumptions about the parametric
class is to use a kernel density estimator. Let K : R→ R be a density function, and
let δ be a positive real number. From the sample, we then define

f̂N(s) :=: f̂ (s) :=
1

Nδ

N

∑
n=1

K
(

s− xn

δ

)
(4.17)

Here K is called the kernel function of the estimator, and δ is called the bandwidth.
Exercise 4.7.7 asks you to confirm that f̂ is indeed a density.6

A common choice for K is the standard normal density. For this choice of K, the
function f̂ in (4.17) is illustrated in figure 4.9 for the case of two sample points, x1

and x2. Centered on sample point xn we place a smooth “bump” drawn in red,
which is the function

gn(s) :=
1

Nδ
K
(

s− xn

δ

)
(n = 1, 2)

Summing these two bumps gives f̂ = g1 + g2, drawn in black.

In R, nonparametric kernel density estimates can be produced using the function
density. Try, for example,

6Although we have not specified a parametric class, our choice of K and δ are associated with
some assumptions about the shape and form of f . For example, if K is taken to be Gaussian, then f̂N
will have exponentially decreasing tails.
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x1 x2

Figure 4.9: Function f̂ when N = 2

> plot(density(runif (200)))

To learn more, type ?density.

Returning to our estimation problem, figure 4.10 shows a kernel density estimate
of f from 200 sample points, using the default settings in R. Figure 4.11 shows the
estimate with 2,000 sample points. (The code for generating figure 4.11 is given
in listing 4.) The fit in figure 4.11 is much better than the comparable parametric
fit in figure 4.8, and, unlike the parametric case, further increases in sample size
continue to improve the fit. Indeed, it can be proved in that, for any density f , the
nonparametric kernel density estimator converges to f in the following sense:

Theorem 4.4.1. Let f and K be any densities on R, and let {xn}∞
n=1

IID∼ f . Let f̂N be as
defined in (4.17). If the bandwidth δN is a sequence depending on N and satisfying δN → 0
and NδN → ∞ as N → ∞, then

E

[∫
| f̂N(s)− f (s)| ds

]
→ 0 as N → ∞

For a proof, see Devroye and Lugosi (2001, theorem 9.2).
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Figure 4.10: Nonparametric, sample size = 200

On the other hand, if you experiment with the code in listing 4, you will see that,
for small sample sizes (try 10), the nonparametric estimate is actually poorer than
the parametric alternative. The good theoretical results we have discussed are all
asymptotic, and nonparametric methods generally need large sample sizes. This
stands to reason: Nonparametric methods have little structure in the form of prior
knowledge, and hence require abundant data.

4.4.4 Commentary

In some fields of science, researchers have considerable knowledge about paramet-
ric classes and specific functional forms. For example, the theory of Brownian mo-
tion describes how the location of a tiny particle in liquid is approximately normally
distributed. Hence, the underlying theory provides the exact parametric class of the
density.

Here’s another example, from a regression perspective: An engineer is interested in
studying the effect of a certain load on the length of a spring. Classical physics tells
her that the relationship is approximately proportional. This provides a functional
form that the engineer can use to estimate a regression function.

When underlying theory provides us with knowledge of functional forms, as in
the two examples above, the parametric paradigm is excellent. Classical statistics

JOHN STACHURSKI January 10, 2014



4.4. PARAMETRIC VS NONPARAMETRIC ESTIMATION 132

Listing 4 The source code for figure 4.11

set.seed (1234)

fden <- function(x) { # The density function of f

return (0.5 * dnorm(x, mean=-1) + 0.5 * dnorm(x, mean =1))

}

fsamp <- function(N) { # Generates N draws from f

observations <- numeric(N)

u <- runif(N)

for (i in 1:N) {

if (u[i] < 0.5) {

observations[i] <- rnorm(1, mean=-1)

}

else observations[i] <- rnorm(1, mean =1)

}

return(observations)

}

observations <- fsamp (2000)

xgrid <- seq(-4.5, 4.5, length =200)

plot(density(observations), main="", xlab="", ylab="")

lines(xgrid , fden(xgrid), col="blue", lwd=2)
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Figure 4.11: Nonparametric, sample size = 2,000

yields many well behaved estimators. Moreover, all the knowledge embodied in the
functional forms helps us to conduct inference: Generalization is about combining
knowledge and data, and the more knowledge we have the better.

What about econometrics?

Unfortunately, no such elegant equivalent of the theory of Brownian motion exists
for the movement of economic variables such as stock prices, or exchange rates.
Similarly, an econometrician trying to estimate the effect of human capital on GDP
does not have the same information as the engineer studying load on a spring, who
knows that her relationship is proportional. What does classical economics tell the
econometrician about the precise functional form relating human capital to GDP?
Not a lot, to be honest.

Overall, economics and other social sciences are generally messier than the physical
sciences, and the econometrician usually comes to the table with much less knowl-
edge of parametric classes and functional forms. This suggests that nonparametric
techniques will become increasingly popular in econometrics. At the same time,
there is no firm dividing line between parametric and nonparametric methods. Of-
ten, a flexible parametric class of densities with many parameters can do a great
job of approximating a given nonparametric class, and be more convenient to work
with. For this reason, modern statistics is something of a mix, blending both para-
metric and nonparametric methods. These notes follow this mixed approach.
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4.5 Empirical Distributions

Recall from (1.12) on page 18 that if x is a discrete random variable taking values
s1, . . . , sJ with probabilities p1, . . . , pJ , then the cdf of x is

F(s) = P{x ≤ s} =
J

∑
j=1
1{sj ≤ s}pj (4.18)

In this section, we’re going to look at an important kind of discrete distribution. To
describe it, let x1, . . . , xN be draws from some unknown distribution F. The empiri-
cal distribution of the sample is the discrete distribution that puts equal probability
on each sample point. Since there are N sample points, that means that probability
1/N is placed on each point xn. The concept of the empirical distribution is a bit
slippery because it’s a random distribution, depending on the sample. Nevertheless,
it’s a very useful object.

Throughout this section, we’ll work with the same fixed observations x1, . . . , xN ∼
F, and xe will denote a random variable with the corresponding empirical distri-
bution. That is, xe is a random variable taking each of the values x1, . . . , xN with
uniform probability 1/N.

The cdf for the empirical distribution is called the empirical cumulative distribu-
tion function, or ecdf. Throughout the text, we will denote it by FN. Invoking (4.18),
we see that the ecdf can be written as

FN(s) = P{xe ≤ s} =
N

∑
n=1

1{xn ≤ s} 1
N

It’s more common to put the 1/N term at the start, so let’s use this as our definition:

FN(s) :=
1
N

N

∑
n=1

1{xn ≤ s} (s ∈ R)

If you think about it, you will see that we can also write

FN(s) = fraction of the sample less than or equal to s

Graphically, FN is a step function, with an upward jump of 1/N at each data point.
Figure 4.12 shows an example with N = 10 and each data point drawn indepen-
dently from a Beta(5, 5) distribution.

In R, the ecdf is implemented by the function ecdf. Try this example:

plot(ecdf(rnorm (20)))
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Figure 4.12: FN and F with N = 10

4.5.1 Plug in Estimators

Continuing the proceeding discussion with the same notation, note that if h is a
function fromR intoR, then by (1.16) on page 22, its expectation with respect to the
empirical distribution is

∫
h(s)FN(ds) :=: E [h(xe)] =

N

∑
n=1

h(xn)
1
N

=
1
N

N

∑
n=1

h(xn) (4.19)

For example, the mean of the empirical distribution is the sample mean of x1, . . . , xN:

∫
sFN(ds) :=: E [xe] =

1
N

N

∑
n=1

xn =: x̄N

If the sample is IID, then by the law of large numbers, the value of the expression
(4.19) converges in probability to the expectation E [h(x1)] =

∫
h(s)F(ds). In other

words,

for h : R→ R and large N we have
∫

h(s)FN(ds) ≈
∫

h(s)F(ds)

This suggests an approach for producing estimators: Whenever we want to estimate
a quantity θ such that
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1. θ =
∫

h(s)F(ds) for some h : R→ R, and

2. the function h is known,

then we replace the cdf F with the ecdf FN and use the resulting statistic

θ̂N :=
∫

h(s)FN(ds) =
1
N

N

∑
n=1

h(xn)

The estimator θ̂N is called the plug in estimator of θ =
∫

h(s)F(ds), because FN
is plugged in to the expression in place of F. Notice that plug in estimators are
nonparametric, in the sense that we need no parametric class assumption in order
to form the estimator.

Example 4.5.1. The plug in estimator of the k-th moment
∫

skF(ds) of F is the sample
k-th moment ∫

skFN(ds) =
1
N

N

∑
n=1

xk
n

Example 4.5.2. The plug in estimator of the variance

∫ [
t−

∫
sF(ds)

]2

F(dt)

is ∫ [
t−

∫
sFN(ds)

]2

FN(dt) =
1
N

N

∑
n=1

(xn − x̄N)
2

This differs slightly from the sample variance s2
N defined on page 112. However, the

deviation is negligible when N is large.

Remark 4.5.1. Although we have defined the plug in estimator as an estimator of
quantities θ that can be expressed as integrals using F, the term “plug in estimator”
is often used more generally for any estimator produced by replacing F with FN.
For example, in this terminology, the plug in estimator of the median F−1(0.5) is
F−1

N (0.5).

4.5.2 Properties of the ecdf

Once again, let x1, . . . , xN be IID draws from some fixed underlying distribution F,
and let FN be the corresponding ecdf. Perhaps the most important single fact about
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the ecdf FN is that it converges to the cdf F as N → ∞. Indeed, from (1.28) on
page 36, we have

FN(s) :=
1
N

N

∑
n=1

1{xn ≤ s} p→ P{xn ≤ s} =: F(s)

In fact, a stronger statement is true. The following theorem is sometimes called the
fundamental theorem of statistics, or the Glivenko-Cantelli theorem:

Theorem 4.5.1 (FTS). If x1, . . . , xN are IID draws from some cdf F, and FN is the corre-
sponding ecdf, then

sup
s∈R
|FN(s)− F(s)| p→ 0

(Here “sup” is roughly equivalent to “max”—see the appendix for more discussion.)
Thus, we see that the maximal deviation between the two functions goes to zero in
probability.7 Figures 4.13–4.15 illustrate the idea. Each picture shows 10 observa-
tions of FN, depending on 10 different observations of the data x1, . . . , xN.

The theorem tells us that, at least in the IID setting, if we have an infinite amount of
data, then we can learn the underlying distribution without having to impose any
assumptions. This is certainly a nice result. However, we should bear in mind that
in reality we only ever have a finite amount of data. As such, assumptions are still
required to generalize from this data.

4.6 Empirical Risk Minimization

Empirical risk minimization is an inductive principle that is essentially nonpara-
metric in nature. Except in special cases, it does not require specification of the
parametric form of the underlying density in order to form the estimator. Instead,
it starts with loss function, which states the subjective loss (opposite of utility) from
incorrect prediction.

4.6.1 The ERM Principle

To understand the principle, consider a setting where we repeatedly observe an
input x to a system, followed by an output y. Both are random variables, and we

7In fact, the theorem tells us that convergence occurs “almost surely,” which is a stronger notion
that in probability. The details are omitted.
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Figure 4.13: Realizations of FN with N = 10
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Figure 4.14: Realizations of FN with N = 100
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Figure 4.15: Realizations of FN with N = 1000

believe there is some stable relation between them. In particular, we assume that the
input-output pairs (x1, y1), . . . , (xN, yN) we observe are IID draws from joint density
p. Suppose our aim is to predict new output values from observed input values.
A natural way to treat this problem is to choose a function f such that f (x) is our
prediction of y once x is observed. Incorrect prediction incurs a loss. Letting y be the
actual outcome, the size of this subjective loss is taken to be L(y, f (x)). The function
L is called the loss function. Common choices for the loss function include:

• The quadratic loss function L(y, f (x)) = (y− f (x))2

• The absolute deviation L(y, f (x)) = |y− f (x)|

• The discrete loss function L(y, f (x)) = 1{y 6= f (x)}

The discrete loss function is typically used when y takes only finitely many possible
values. A unit loss is incurred if our guess is incorrect. No loss is incurred otherwise.

Returning to the general problem, with arbitrary loss function L, one might consider
choosing f so as to minimize the expected loss

R( f ) := E [L(y, f (x))] :=:
∫ ∫

L(t, f (s))p(s, t)dsdt (4.20)

JOHN STACHURSKI January 10, 2014



4.6. EMPIRICAL RISK MINIMIZATION 140

In (4.20), the expected loss is called the risk, and R is called the risk function. If
we knew the joint density p, then, at least in principle, we could evaluate R( f ) for
any f by calculating the double integral in (4.20). By repeating this calculation for
different f , we could search for a minimizer.

However, in the statistical setting, there is an obvious difficultly: We don’t know p.
Hence R( f ) cannot be evaluated, let alone minimized.

All is not lost. While we don’t know p, we do have at hand the observed input-
output pairs (x1, y1), . . . , (xN, yN), which are independent draws from p. Draws
from p give us information about p. For example, the law of large numbers tells us
for large N we have

R( f ) := E [L(y, f (x))] ≈ 1
N

N

∑
n=1

L(yn, f (xn))

This motivates us to replace the risk function R with the empirical risk function

R̂( f ) :=
1
N

N

∑
n=1

L(yn, f (xn)) (4.21)

In particular, we obtain an estimate f̂ of the true minimizer argmin f R( f ) by solving

f̂ = argmin
f∈F

R̂( f ) = argmin
f∈F

1
N

N

∑
n=1

L(yn, f (xn)) (4.22)

This inductive principle, which produces an estimate of the risk-minimizing func-
tion by minimizing the empirical risk, is called empirical risk minimization (ERM).

Notice that in (4.22) we are minimizing over a set of functions F . This set of func-
tions is called the hypothesis space, and is a class of candidate functions chosen by
the econometrician or researcher. At first pass, it might seem that we should F to be
the set of all functions f : R → R, or at least take it to be as large as possible. After
all, if the risk minimizing function f ∗ := argmin f R( f ) is not in F , as visualized
in figure 4.16, then the solution to (4.22) is not equal to f ∗, and we are making a
sub-optimal choice.

Although this reasoning seems logical, it turns out that setting F to be the set of all
functions from R → R is a bad idea. In fact, we want to be quite restrictive in our
choice of F . These ideas are explored in detail in §4.6.2.

JOHN STACHURSKI January 10, 2014



4.6. EMPIRICAL RISK MINIMIZATION 141

F

all f : R→ R

f ∗ := argmin f R( f )

Figure 4.16: Choosing the hypothesis space

4.6.2 ERM and Least Squares

Specializing to the quadratic loss function L(y, ŷ) = (y− ŷ)2, and observing that the
term 1

N makes no difference to the solution f̂ (see §13.2), the ERM problem becomes

min
f∈F

N

∑
n=1

(yn − f (xn))
2 (4.23)

For obvious reasons, this optimization problem is called the least squares problem.
If we specialize F to be the set of affine functions

L := { all functions of the form `(x) = α + βx} (4.24)

then the problem reduces to the linear least squares problem

min
`∈L

N

∑
n=1

(yn − `(xn))
2 = min

α, β

N

∑
n=1

(yn − α− βxn)
2 (4.25)

This is the empirical risk counterpart to the risk minimization problem (1.23) on
page 30. Direct differentiation and simple manipulations show that the minimizers
of the empirical risk are

β̂ =
∑N

n=1(xn − x̄)(yn − ȳ)

∑N
n=1(xn − x̄)2

and α̂ =
1
N

N

∑
n=1

yn − β̂
1
N

N

∑
n=1

xn (4.26)

Comparing with (1.24) on page 30, which gives the minimizers of the risk, we see
that in this case the minimizers of the empirical risk are the sample analogues of the
minimizers of the risk.
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Now let’s return to the issue of hypothesis space mentioned above: Why would
we want to minimize the empirical risk over a restricted hypothesis space such as
L, rather than the entire set of functions from R to R? After all, minimizing the
empirical risk over a bigger set of functions makes the empirical risk smaller.8 Isn’t
that desirable?

The answer is: not necessarily. The reason is that, while the function f̂ obtained by
minimizing empirical risk over a large set of functions will make the empirical risk
R̂( f̂ ) small, the actual risk R( f̂ ) may not be. The underlying problem is that we are
attempting to minimize expected loss on the basis of a sample mean, rather using
the expectation from the actual distribution. We need to be careful about reading
“too much” into this particular sample.

Let’s illustrate this point by way of an example, where empirical risk is minimized
over progressively larger hypothesis spaces. In the example, the model we will
consider is one that generates input-output pairs via

x ∼ U[−1, 1] and then y = cos(πx) + u where u ∼ N(0, 1) (4.27)

where U[−1, 1] is the uniform distribution on the interval [−1, 1]. Our hypothesis
spaces for predicting y from x will be sets of polynomial functions. To fix notation,
let Pd be the set of all polynomials of degree d. That is,

Pd := { all functions fd(x) = c0x0 + c1x1 + · · · cdxd where each ci ∈ R}

Clearly
P1 ⊂ P2 ⊂ P3 ⊂ · · ·

because if f is a polynomial of degree d, then f can be represented as a polynomial
of degree d + 1 just by setting the last coefficient cd+1 to zero:

Pd 3 fd(x) = c0x0 + c1x1 + · · · cdxd

= c0x0 + c1x1 + · · · cdxd + 0xd+1 ∈ Pd+1

Also, the set of linear functions L defined in (4.24) is equal to P1.

If we seek to predict y from x using quadratic loss and the set Pd as our candidate
functions, the risk minimization problem is

min
f∈Pd

R( f ) where R( f ) = E [(y− f (x))2] (4.28)

8Intuitively, if we expand the set of candidates, then we can find a smaller value. Formally, if A is
any set, g : A→ R, and D ⊂ D′ ⊂ A, then infa∈D′ g(a) ≤ infa∈D g(a) always holds.
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Figure 4.17: Risk and empirical risk as a function of d

while the empirical risk minimization problem is

min
f∈Pd

R̂( f ) where R̂( f ) =
1
N

N

∑
n=1

(yn − f (xn))
2 (4.29)

To illustrate the difference between risk and empirical risk, we first generate N = 25
data points from the model (4.27). Taking this as our data set, we then solve (4.29)
repeatedly, once for each d in 1, 2, . . . , 15. The solution to the d-th minimization
problem is denoted f̂d, and is, by construction, a polynomial of degree d. Finally, we
compare the risk R( f̂d) and empirical risk R̂( f̂d).9 The results are in figure 4.17.

Analysing the figure, we see that, as expected, empirical risk falls monotonically
with d. This must be the case because minimizing a function over larger and larger
domains produces smaller and smaller values. On the other hand, the risk decreases
slightly and then increases rapidly. For large d, the minimizer f̂d of the empirical risk
is associated with high risk in the sense of large expected loss.

9The risk R( f̂d) is evaluated by substituting f̂d into the expression for R in (4.28) and calculating
the expectation numerically.
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We can get a feeling for what is happening by plotting the data and the functions. In
figures 4.18–4.21, the N data points are plotted alongside the function y = cos(πx)
from the true model (4.27) in black, and fitted polynomial f̂d in red. The function
y = cos(πx) is the risk minimizer, and represents the ideal prediction function. In
figure 4.18 we have d = 1, and the fitted polynomial f̂1 is the linear regression line.
In figures 4.19, 4.20 and 4.21 we have d = 3, d = 11 and d = 14 respectively, and the
fitted polynomials are f̂3, f̂11 and f̂14.

When d = 1, the hypothesis space Pd = P1 is quite small. There is no function in
this class that can do a good job of fitting the underlying model. This situation is
called “under-fitting,” and is reflected in the poor fit of the red line to the black line
in figure 4.18. When d = 3, the class of functions Pd = P3 is considerably larger.
Given that the data is relatively noisy, and that we only have 25 observations, the
fit of the function is fairly good (figure 4.19). If we look at the risk for d = 3 on the
right-hand side of figure 4.17, we see that it is lower than for d = 1.

On the other hand, if we take d up to 11 or even 14, the fit to the underlying model
is poor, and the risk is high. Examining the corresponding figures (figures 4.20 and
4.21), we see that the fitted polynomial has been able to fit the observed data closely,
passing near to many of the data points. In a sense it is paying too much attention to
this particular realization of the data. When a new input x is drawn, the prediction
f̂14(x) is likely to be a poor predictor of y, and the risk is correspondingly high. This
situation is called “over-fitting.”

What can we learn from this discussion? The main lesson is that the choice of the
hypothesis spaceF in the empirical risk minimization problem (4.23) is crucial. This
is the problem of model selection.

In real statistical applications, we do not have the luxury of knowing the true model
when we choose F . In response, many researchers simply choose F = L, the set of
linear functions. This may or may not be a good choice. Ideally, the hypothesis space
should be carefully chosen on the basis of economic theory: F should be the set of
“reasonable” candidate descriptions of the relationship between x and y, given our
knowledge of the economic system we are modelling. Once again, the message is
that statistical learning equals prior knowledge plus data.

The problem of model selection is discussed in more depth in chapter 10.
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Figure 4.18: Fitted polynomial, d = 1
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Figure 4.19: Fitted polynomial, d = 3
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Figure 4.20: Fitted polynomial, d = 11
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Figure 4.21: Fitted polynomial, d = 14
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4.6.3 Other Applications of ERM

In our discussion of ERM so far, we have talked about finding functions to predict
y given x. A simpler situation is where we observe only y and seek to predict it. In
this case the object we seek to calculate is just a constant (a prediction of y) rather
than a function (that predicts y from any given x). This makes the learning problem
simpler.

Suppose, for example, that we observe y1, . . . , yN
IID∼ F, where F is an unknown cdf.

For the sake of concreteness, let’s imagine that each observation is the monetary
payoff of a particular game at a casino. We want to predict the payoff of the next
draw. Letting α be our prediction and L be the loss function, the corresponding risk
is E [L(α, y)]. If we specialize to the quadratic loss, this becomes

R(α) = E [(α− y)2] =
∫
(α− s)2F(ds)

The empirical risk is

R̂(α) =
1
N

N

∑
n=1

(α− yn)
2 =

∫
(α− s)2FN(ds) (4.30)

Here FN is the empirical distribution of the sample. Minimizing R̂(α) with respect
to α, we obtain our prediction of y as

α∗ := argmin
α

R̂(α) =
1
N

N

∑
n=1

yn

Thus, at least with quadratic loss, ERM leads to the sample mean, which is the most
natural predictor of y.

As this last example helps to clarify, the ERM principle is essentially nonparamet-
ric in nature. The empirical risk is determined only by the loss function and the
empirical distribution. Unlike maximum likelihood, say, we usually don’t have to
specify the parametric class of the unknown distributions in order to solve the ERM
problem.

At the same time, we can recover many parametric techniques as special cases of
empirical risk minimization. One is maximum likelihood. To see this, suppose that
x is drawn from unknown density q. We wish to learn the density q by observing
draws from this density. We take our loss function to be L(p, x) = − ln p(x). In
other words, if our guess of q is p and the value x is drawn, then our loss is− ln p(x).
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Loosely speaking, if p puts small probabilities on regions where x is realized, then
we suffer large loss. Hence, the loss function encourages us to choose p close to q.

Our choice of loss leads to the risk function

R(p) = E [L(p, x)] = −
∫

ln[p(s)]q(s)ds

Although it may not be obvious at first glance, minimizing this risk function yields
the unknown density q. To see this, let us first transform our expression for the risk
function to

R(p) =
∫

ln
[

q(s)
p(s)

]
q(s)ds−

∫
ln[q(s)]q(s)ds

(Can you see why the two expressions for R(p) are equal?) The term on the far right
is called the entropy of the density q, and does not involve p. Hence, minimization
of the risk comes down to minimization of

D(q, p) :=
∫

ln
[

q(s)
p(s)

]
q(s)ds

This quantity is called the Kullback-Leibler (KL) deviation between q and p. The
KL deviation is possibly infinite, always nonnegative, and zero if and only if p = q.10

It follows that the unique minimizer of the risk is the true density q.

Now suppose that we observe IID draws x1, . . . , xN from q. To estimate q, the ERM
principle indicates we should solve

p̂ := argmin
p

R̂(p) = argmin
p

{
1
N

N

∑
n=1
− ln p(xn)

}
= argmax

p

{
N

∑
n=1

ln p(xn)

}
To make the connection with maximum likelihood, let’s now add the assumption
that the unknown density lies in some parametric class {p(·; θ)}θ∈Θ. Suppose that
we know the parametric class, but the true value θ generating the data is unknown.
Choosing our estimate p̂ of q now reduces to choosing an estimate θ̂ of θ. Re-writing
our optimization problem for this case, we obtain

θ̂ = argmax
θ

{
N

∑
n=1

ln p(xn; θ)

}
= argmax

θ

`(θ)

where ` is the log-likelihood. It follows from this expression that the ERM estimator
is precisely the maximum likelihood estimator.

10More precisely, D(q, p) = 0 if and only if p = q almost everywhere. Equality almost everywhere
is a basic concept from measure theory that is (only just) beyond the scope of these notes. Note that
if two density are equal almost everywhere then they share the same cdf, and hence represent the
same distribution.
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4.6.4 Concluding Comments

The ERM principle is a very general principle for solving statistical problems and
producing estimators. For such a general method it is difficult to give a set of strong
results showing that ERM produces good estimators. Indeed, there will be instances
when ERM produces poor estimators, as discussed in §4.6.2. Having said that, some
rather general consistency results have been obtained. The details are beyond the
level of these notes. Some discussion can be found in [19].

4.7 Exercises

Ex. 4.7.1. Confirm (4.11): Show that, for any estimator θ̂ of θ, we have mse[θ̂] =
var[θ̂] + bias[θ̂]2.

Ex. 4.7.2. Confirm that for an IID sample x1, . . . , xN with variance σ2, the sample
variance s2

N defined in (4.1) is unbiased for σ2.11

Ex. 4.7.3. Let x1, . . . , xN be IID with mean µ and variance σ2. Let x̄N be the sample
mean, and let σN be a consistent estimator of σ. What is the limiting distribution of

yN := N
(

x̄N − µ

σN

)2

Ex. 4.7.4. Confirm that the maximizer of (4.12) is the sample mean of x1, . . . , xN.

Ex. 4.7.5. Let x1, . . . , xN
IID∼ F, where F is a cdf. Let m4 < ∞ be the 4-th moment.

That is,
m4 :=

∫
s4F(ds)

Define the plug in estimator of m4. Is the estimator consistent? Why or why not?

Ex. 4.7.6. Suppose we are playing a slot machine (one-armed bandit) that either
pays one dollar or nothing, with each payoff independent of the previous outcome.
Let µ be the probability of winning (i.e., receiving one dollar). Having observed 100
plays x1, . . . , x100, where xn ∈ {0, 1}, a natural estimator of µ is the fraction of wins,
which is just the sample mean = x̄. Use the principle of maximum likelihood to
obtain the same conclusion.12

11The sample standard deviation s (4.2) is typically biased. To see why, look up Jensen’s inequality.
12Hint: Each xn is a Bernoulli random variable, the probability mass function for which can be

written as p(s; µ) := µs(1− µ)1−s for s ∈ {0, 1}.
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Ex. 4.7.7. Show that f̂ in (4.17) is a density for every N, every δ > 0 and every
realization of the sample.13

Ex. 4.7.8. Let x be a random variable with µ := E [x]. Consider the risk function
given by R(θ) = E [(θ − x)2]. Show that µ is the minimizer of R(θ) over all θ ∈ R,
without using differentiation.14

Ex. 4.7.9 (Computational). Let x1, . . . , xN be IID and uniformly distributed on the
interval [0, 1]. Let x̄N be the sample mean. What is the expectation and variance
of x̄N? For N = 1, 2, 10, 500, simulate 10,000 observations of the random variable
x̄N. Histogram the observations, using one histogram for each value of N. (For
example, the first histogram should be of 10,000 observations of x̄1.) What do you
observe about these four distributions? What interpretation can you give?

Ex. 4.7.10 (Computational). Extending your results in exercise 1.5.24, determine the
cdf of z := max{u1, . . . , uN}, where u1, . . . , uN are N independent random variables
uniformly distributed on [0, 1]. Check this by generating 1,000 draws of y and plot-
ting the ecdf, along with your expression for the cdf. The ecdf should be close to the
cdf. In the simulation, set N = 5.

Ex. 4.7.11 (Computational). Implement the ecdf as your own user-defined function
in R, based on the definition (i.e., that it reports the fraction of the sample falling
below a given point).

Ex. 4.7.12. Let θ̂N be an estimator of θ. Show that if θ̂N is asymptotically normal,
then θ̂N is consistent for θ. (Warning: This exercise is harder, and requires a bit of
experience with analysis to solve properly.)

4.7.1 Solutions to Selected Exercises

Solution to Exercise 4.7.1. Adding and subtracting E [θ̂], we get

mse[θ̂] := E [(θ̂ − θ)2] = E [(θ̂ −E [θ̂] +E [θ̂]− θ)2]

Expanding the square and minor manipulations yield the desired result.

13Hint: You need to show that f̂ is nonnegative and integrates to one. Showing that
∫

f̂ (s)ds = 1
is the hard part. Try a change-of-variables argument.

14Hint: Use the add and subtract strategy.
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Solution to Exercise 4.7.2. We showed in §4.2.3 that

s2 =
N

N − 1

[
1
N

N

∑
n=1

(xn − µ)2 − (x̄− µ)2

]
Taking expectations, applying the result var[x̄] = E [(x̄ − µ)2] = σ2/N from (4.10)
and rearranging gives E [s2] = σ2 as claimed.

Solution to Exercise 4.7.3. Let

wN :=
√

N
x̄N − µ

σN
=

σ

σN

√
N

x̄N − µ

σ

Since σN
p→ σ by assumption, fact 1.4.1 on page 31 yields σ/σN

p→ σ/σ = 1. Apply-
ing the central limit theorem and Slutsky’s theorem (fact 1.4.5 on page 34) together,

we then have wN
d→ z ∼ N (0, 1). By the continuous mapping theorem (fact 1.4.4

on page 34), yN = w2
N converges in distribution to z2. By fact 1.3.4 on page 1.3.4, the

distribution of z2 is χ2(1).

Solution to Exercise 4.7.5. The plug in estimator of m4 is the sample fourth mo-
ment. The sample fourth moment is consistent for m4 under the IID assumption
by the law of large numbers, given the stated assumption that m4 < ∞.

Solution to Exercise 4.7.6. Each xn is a Bernoulli random variable, with pmf given
by p(s; µ) := µs(1− µ)1−s for s ∈ {0, 1}. By independence, the joint distribution is
the product of the marginals, and hence the log likelihood is

`(µ) =
N

∑
n=1

log p(xn; µ) =
N

∑
n=1

[xn log µ + (1− xn) log(1− µ)]

Differentiating with respect to µ and setting the result equal to zero yields µ̂ = x̄ as
claimed.

Solution to Exercise 4.7.7. The nonnegativity of f̂ is obvious. To show that
∫

f̂ (s)ds =
1, it’s enough to show that ∫

K
(

s− a
δ

)
ds = δ

for any given number a. This equality can be obtained by the change of variable
u := (s− a)/δ, which leads to∫

K
(

s− a
δ

)
ds =

∫
K(u)δdu = δ

∫
K(u)du

Since K is a density, the proof is done.
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Solution to Exercise 4.7.8. Adding and subtracting µ, we can express R(θ) as

R(θ) = E {[(θ − µ) + (µ− x)]2}

Expanding this out and using E [x] = µ, we obtain R(θ) = (θ − µ)2 + var[x]. Evi-
dently a minimum is obtained when θ = µ.

Solution to Exercise 4.7.12. Fix δ > 0. It suffices to show that for any positive num-
ber ε we have

lim
N→∞

P{|θ̂N − θ| > δ} ≤ ε (4.31)

(If a ≥ 0 and a ≤ ε for any ε > 0, then a = 0.) To establish (4.31), fix ε > 0. Let
z be standard normal, and choose M such that P{|z| ≥ M} ≤ ε. For N such that√

Nδ ≥ M we have

P{|θ̂N − θ| > δ} = P{
√

N|θ̂N − θ| >
√

Nδ} ≤ P{
√

N|θ̂N − θ| > M}

Taking N → ∞, applying asymptotic normality, the continuous mapping theorem
(fact 1.4.4 on page 34) and the definition of M gives (4.31).
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Chapter 5

Methods of Inference

[roadmap]

5.1 Making Inference about Theory

[roadmap]

5.1.1 Sampling Distributions

In §4.2 we emphasized the fact that statistics, and hence estimators, are random
variables. For example, if θ̂ is an estimator of some quantity θ, then θ̂, being a
statistic, must be an observable function of the data. If x1, . . . , xN is the data, and
θ̂ = T(x1, . . . , xN) for known function T, then θ̂ is the random variable

θ̂(ω) = T(x1(ω), . . . , xN(ω)) (ω ∈ Ω)

(See, for example, (4.5) on page 113.)

Being a random variable, θ̂ has a distribution, which is the cdf G(s) = P{θ̂ ≤ s}.
The distribution G of θ̂ is sometimes called its sampling distribution. Usually this
distribution will depend on unknown quantities. For example, if x1, . . . , xN

IID∼ F
for some unknown cdf F, then the distribution of θ̂ will depend on F and T. Thus,
the sampling distribution depends partly on the known object T, and partly on the
uknown object F.
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Let’s look at two examples. First, suppose that x1, . . . , xN is an IID sample from
the normal distribution N (θ, σ2), where both θ and σ are unknown. Consider the
sample mean x̄ as an estimator of the mean θ. Combining fact 1.2.6 on page 24, (4.6)
on page 114 and (4.10) on page 115, we obtain

x1, . . . , xN
IID∼ N (θ, σ2) =⇒ x̄ ∼ N (θ, σ2/N) (5.1)

The right-hand side is the sampling distribution of x̄. Although this expression
provides some information, the sampling distribution still depends on the unknown
quantities θ and σ.

As a second example, suppose that we are interested in the average length of time
between incoming telephone calls at a call center during business hours. We model
the duration x between two calls as having the exponential distribution, with den-
sity f (s) = 1− exp(−λs). The parameter λ is unknown. We propose to monitor
consecutive calls until observations x1, . . . xN are recorded. Using these observa-
tions, we will estimate mean duration using the sample mean x̄ = N−1 ∑n xn.

Since sums of independent exponential random variables are known to have the
gamma distribution, ∑N

n=1 xn must be gamma. Since scalar multiples of gammas are
again gamma, x̄ = N−1 ∑N

n=1 xn must also be gamma. Thus, under our assumptions,
when the data is collected and x̄ is evaluated, its value will be a draw from a gamma
distribution. Which particular gamma distribution depends on the unknown quan-
tity λ.

5.1.2 Comparing Theory with Outcomes

In chapter 4, we were interested in estimating and predicting. We looked at ways
to find estimators, and at the properties of these estimators. In this chapter, we
are going to consider a different style of problem. The problem is one where we
hold a belief or theory concerning the probabilities generating the data, and we are
interested in whether the observed data provides evidence for or against that theory.

To illustrate, suppose again that we have x1, . . . , xN
IID∼ N (θ, σ2), where both θ and

σ are unknown. Suppose that some economic theory that implies a specific value θ0

for the unknown parameter θ (prices should be equal to marginal cost, excess profits
should be equal to zero, etc.) In this case, our interest in observing θ̂ will be: What
light does this realization θ̂ shed on our theory?
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θ̂ θ0

x

Figure 5.1: Theoretical and realized values

θ̂ θ0

N (θ0, s2/N)

Figure 5.2: Estimated sampling distribution when the theory is correct

The naive answer is: The realization θ̂ appears to contradict our theory when it’s a
long way from our hypothesized value θ0. But this is not really an answer until we
specify what “a long way” is. For example, consider figure 5.1. Is θ0 a long way
from θ̂?

To determine what “a long way” means, we can look at the sampling distribution of
θ̂. In the present case, this distribution is N (θ, σ2/N), as shown in (5.1). Although
the parameters θ and σ are not known, our theory specifies that θ should be equal
to θ0, and the second parameter σ2 can be estimated consistently by the sample
variance s2. Plugging the hypothesized mean θ0 and the estimated variance s2 into
the sampling distribution gives the density in figure 5.2. Looking at this figure, we
can see that θ0 and θ̂ can indeed be regarded as a long way apart, in the sense that if
our theory was correct, then θ̂ would be a realization from way out in the tail of its
own distribution. Thus, the realization θ̂ is “unlikely” when our theory is true, and
this fact can be construed as evidence against the theory.

In the following sections we formalize these ideas.

5.2 Confidence Sets

The idea of confidence sets is to provide a set of parameter values, distributions, or
models that are “plausible” given the observed outcome of a statistic.
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5.2.1 Parametric Examples

Suppose that we have a parametric class of models {Mθ} indexed by parameter
θ ∈ Θ ⊂ R. For example, the models might describe a set of cdfs {Fθ}, or a family
of proposed regression functions { fθ} in a regression problem. We anticipate ob-
serving a sample x := (x1, . . . , xN) generated by one of the models Mθ. Let Fθ be the
joint distribution of the sample vector x when the data is generated by Mθ. We use
the notation Pθ to refer to probabilities for x. For example, given B ⊂ RN, we let
Pθ{x ∈ B} be the probability that x ∈ B given x ∼ Fθ.1

Fix α ∈ (0, 1). A random set C(x) ⊂ Θ is called a 1− α confidence set for θ if

Pθ{θ ∈ C(x)} ≥ 1− α for all θ ∈ Θ

Remember, it is the set that is random here, not the parameter θ. The “for all” state-
ment is necessary since we don’t actually know what the true value of θ is, and
hence the experiment should be designed such that Pθ{θ ∈ C(x)} ≥ 1− α regard-
less of which θ is generating the data. The interpretation of the confidence set is
that, if we conduct all our statistical experiments with a fixed value of α, then our
confidence sets will contain the true parameter about (1− α)× 100% of the time.

If C(x) is an interval in R, then C(x) is also called a confidence interval.

Example 5.2.1. Let x1, . . . , xN
IID∼ N (θ, σ2), where θ ∈ Θ = R is unknown. Suppose

for the moment that σ is known. We wish to form a confidence interval for θ. By
(5.1), we have

√
N
(x̄N − θ)

σ
∼ N (0, 1) (5.2)

and hence, applying (1.14) on page 21,

Pθ

{√
N

σ
|x̄N − θ| ≤ zα/2

}
= 1− α when zα/2 := Φ−1(1− α/2)

Here Φ is the standard normal cdf. Some rearranging gives

Pθ

{
x̄N −

σ√
N

zα/2 ≤ θ ≤ x̄N +
σ√
N

zα/2

}
= 1− α

Since this argument is true regardless of the value of θ, we conclude that if en :=
σzα/2/

√
N, then C(x) := (x̄N − en, x̄N + en) is a 1− α confidence interval for θ

1For those readers who prefer more formal definitions, let Pθ{x ∈ B} :=
∫
1{s ∈ B}Fθ(ds).
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Example 5.2.2. Continuing on from example 5.2.1, a more realistic situation is that
σ is also unknown. In that case, a natural approach is to replace σ with the sample
standard deviation sN. In this case, (5.2) becomes

√
N
(x̄N − θ)

sN
∼ FN−1 (5.3)

where FN−1 is the cdf of the t-distribution with N − 1 degrees of freedom.2 The
reasoning in example 5.2.1 now goes through when zα/2 is replaced by tα/2 :=
F−1

N−1(1− α/2), and we obtain

Pθ

{
x̄N −

sN√
N

tα/2 ≤ θ ≤ x̄N +
sN√

N
tα/2

}
= 1− α

In example 5.2.2, note that since the standard deviation of x̄N is σ/
√

N, the term
sN/
√

N is a sample estimate of the standard deviation of the estimator x̄. It is often
called the standard error. More generally, if θ̂ is an estimator of some quantity θ,
then the standard error is

se(θ̂) := a sample estimate of the standard deviation of θ̂

Of course this is not really a formal definition because we haven’t specified which
estimate of the standard deviation we are talking about, but nevertheless the ter-
minology is very common.3 Using our new notation, we can write the confidence
interval in example 5.2.2 as

C(x) := (x̄N − se(x̄N)tα/2, x̄N + se(x̄N)tα/2) (5.4)

5.2.2 Asymptotic Confidence Sets

As the degrees of freedom increases, quantiles of the t-distribution converge to those
of the normal distribution. Hence, for large N, we can replace tα/2 with zα/2 in (5.4)
and the approximation will be accurate. This is part of a more general phenomenon
related to the central limit theorem. Recall from §4.2.3 that an estimator θ̂N of θ ∈ R
is called asymptotically normal if

√
N(θ̂N − θ)

d→
√

v(θ) Z as N → ∞ (5.5)

2The proof of this statement is clearly related to fact 1.3.6 on page 27. The details are a bit fiddly.
We omit them because more general results are established in chapter 7.

3Sometimes the term “standard error” is used to refer to the standard deviation of the estimator,
rather than an estimate of the standard deviation.
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where v(θ) is some positive constant and Z is standard normal. The constant v(θ)
is called the asymptotic variance of θ̂N. Many estimators have this property. For
example, most maximum likelihood estimators are asymptotically normal, as are
smooth transformations of sample means (theorem 1.4.3 on page 37).

Now suppose we have a sequence of statistics se(θ̂N) such that

√
N se(θ̂N)

p→
√

v(θ) as N → ∞ (5.6)

As exercise 5.5.1 asks you to show, (5.5) and (5.6) imply that

θ̂N − θ

se(θ̂N)

d→ Z as N → ∞ (5.7)

As a result, for large N, we can write

θ̂N ≈ θ + se(θ̂N)Z (5.8)

where the approximate equality is in terms of distribution. We see that se(θ̂N) is
an approximation to the standard deviation of θ̂N, which explains our choice of
notation. As before, se(θ̂N) is referred to as the standard error of the estimator.

A sequence of random sets CN(x) ⊂ Θ is said to form an asymptotic 1− α confi-
dence set for θ if

lim
N→∞

Pθ{θ ∈ CN(x)} ≥ 1− α for all θ ∈ Θ

For our asymptotically normal estimator θ̂N, the sequence

CN(x) := (θ̂N − se(θ̂N)zα/2, θ̂N + se(θ̂N)zα/2) (5.9)

can be used because, rearranging, taking the limit and applying (5.7),

lim
N→∞

Pθ{θ ∈ CN(x)} = lim
N→∞

Pθ

{
θ̂N − se(θ̂N)zα/2 ≤ θ ≤ θ̂N + se(θ̂N)zα/2

}
= lim

N→∞
Pθ

{
−zα/2 ≤

θ̂N − θ

se(θ̂N)
≤ zα/2

}
= 1− α

Looking at (5.9) gives a good indication of why standard errors are normally re-
ported along with the point estimate. For example, we have the following useful
rule of thumb: If α = 0.05, then zα/2 ≈ 2, so there is a 95% likelihood that the true
parameter lies within 2 standard deviations of the observed value of our estimator.
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5.2.3 A Nonparametric Example

Confidence sets can be obtained in nonparametric settings too. A nice example is
confidence sets for the ecdf. In § 4.5.2, we learned that if x1, . . . , xN are IID draws
from some cdf F, and FN is the corresponding ecdf, then sups |FN(s)− F(s)| p→ 0.
This is the fundamental theorem of statistics (theorem 4.5.1). In 1933, A.N. Kol-
mogorov used an extension of the central limit theorem to obtain an asymptotic
distribution for this term. In particular, he showed that

√
N sup

s∈R
|FN(s)− F(s)| d→ K (5.10)

where K is the Kolmogorov distribution

K(s) :=

√
2π

s

∞

∑
i=1

exp
[
− (2i− 1)2π2

8s2

]
(s ≥ 0) (5.11)

Notice that, like in the CLT, the limiting distribution K is independent of the cdf F
that generates the data.

We can use this result to produce an asymptotic 1− α confidence set for F. To do so,
let F be the set of all cdfs on R, let k1−α := K−1(1− α), and let

CN(x) :=
{

F ∈ F : FN(s)−
k1−α√

N
≤ G(s) ≤ FN(s) +

k1−α√
N

for all s ∈ R
}

The set CN(x) ⊂ F is an asymptotic 1− α confidence set for F. Indeed, rearranging
the expression, we get

{F ∈ CN(x)} =
{
−k1−α ≤

√
N(FN(s)− F(s)) ≤ k1−α for all s

}
=
{√

N|FN(s)− F(s)| ≤ k1−α for all s
}

=

{
sup

s

√
N|FN(s)− F(s)| ≤ k1−α

}
Hopefully the last equality is clear.4 Applying (5.10) now confirms our claim:

lim
N→∞

P{F ∈ CN(x)} = lim
N→∞

P

{
sup

s

√
N|FN(s)− F(s)| ≤ k1−α

}
= 1− α

4If g : D → R and g(s) ≤ M for all s ∈ D, then sups∈D g(s) ≤ M. Conversely, if sups∈D g(s) ≤ M,
then g(s) ≤ M for all s ∈ D.
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Given our data x1, . . . , xN and the corresponding ecdf FN, we can present the con-
fidence set CN(x) visually by plotting the lower bound function FN(s)− k1−α/

√
N

and the the upper bound function FN(s) + k1−α/
√

N. This is done in figure 5.3 for
α = 0.05. The data is generated using an arbitrary distribution F (the t-distribtion
with 2 degrees of freedom). In figures (a) and (b), the true function F is not shown.
In (c) and (d), F is shown in red. The preceding theory tells us that realizations of
the confidence set will catch the true function F about 95 times in 100.

The code for producing (d) of figure 5.3 is shown in listing 5. In the code, you
will see that the value we used for k1−α = k0.95 := K−1(0.95) was 1.36. This value
was obtained numerically from the definition of K in (5.11). The technique used
was to truncate the infinite sum in (5.11) at 20 to provide an approximation to K,
and then search for an s satisfying K(s) = 1− α, or, equivalently, f (s) = 0 when
f (s) := K(s)− 1 + α. The root of f was found using the R univariate root-finding
function uniroot. See listing 6.

Listing 5 The source code for figure 5.3

samp_size <- 1000

grid_size <- 400

xgrid <- seq(-3, 3, length=grid_size)

FN <- function(s, X) return(mean(X <= s)) # ecdf

X <- rt(samp_size , 2) # RVs from t-dist with 2 DF

Y <- numeric(length(xgrid))

for (i in 1: length(xgrid)) Y[i] <- FN(xgrid[i], X)

Y_upper <- Y + 1.36 / sqrt(samp_size)

Y_lower <- Y - 1.36 / sqrt(samp_size)

plot(xgrid , Y, type="l", col="blue", xlab="", ylab="")

lines(xgrid , Y_upper)

lines(xgrid , Y_lower)

lines(xgrid , pt(xgrid , 2), col="red")

5.3 Hypothesis Tests

[roadmap]
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(d) N = 1000, true F shown in red

Figure 5.3: Confidence sets for the ecdf
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Listing 6 Finding the value of k1−α

K <- function(s) { # Kolmogorov cdf

a <- sqrt(2 * pi) / s

b <- 0

for (i in 1:20) {

b <- b + exp(- (2 * i - 1)^2 * (pi^2 / (8 * s^2)))

}

return (a * b)

}

alpha <- 0.05

f <- function(s) return(K(s) - 1 + alpha)

ur <- uniroot(f, lower =1.2, upper =1.5)

print(ur)

5.3.1 The Framework

Hypothesis testing begins with the specification of a null hypothesis, which is a
statement that the observed data is being generated by a certain model, or one of a
certain class of models. For example, suppose we observe data pairs (xn, yn). Our
null hypothesis might be that all pairs are generated by a particular functional rela-
tionship y = f (x)+ u, where f is a specific function and u has a specific distribution.
Alternatively, our null hypothesis might be that the distribution of u belongs to a
certain parametric class of distributions, and that the function f lies in some partic-
ular set of functions H, such as the increasing functions, or the twice differentiable
functions, or the set of 3rd order polynomials.

One might imagine that the standard procedure in statistics is to show the validity of
the null hypothesis, but it is not. Rather, a hypothesis test is an attempt reject the null.
Karl Popper (1902–1994) was a major originator and proponent of this approach. To
illustrate why we should focus on rejection, Popper used the example of testing the
theory that all swans are white. (Consider this to be our null hypothesis.) It is futile
to attempt to prove this theory correct: Regardless of how many white swans we
find, no amount can ever confirm the claim that that all swans on planet earth are
white. On the other hand, a single black swan can show the claim to be false. In this
sense, attempting to falsify a theory (i.e., reject the null) is more constructive than
attempting to confirm it.
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Although we attempt to reject the null hypothesis, we do so only if strong evidence
against it is observed. To understand how this convention came about, suppose
that we have a collection of theories about how the economy works. The procedure
would then be to step through the theories, at each stage taking correctness of the
theory as the null hypothesis and attempting to reject. If the theory is rejected then
we can discard it, and go on to the remaining theories. This is a useful process of
elimination. However, we don’t want to mistakenly discard a good theory. Hence,
we only reject when there is strong evidence against the null hypothesis.

5.3.2 Constructing Tests

Let’s look at testing in the parametric setting of §5.2.1. We have a parametric class of
models {Mθ} indexed by parameter θ ∈ Θ ⊂ R. We let Fθ be the joint distribution
of the sample vector x when the data is generated by Mθ. We use the notation Pθ

to refer to probabilities for x. For example, given B ⊂ RN, we let Pθ{x ∈ B} be the
probability that x ∈ B given x ∼ Fθ. A null hypothesis is a specification of the set of
models {Mθ} that we believe generated x. This amounts to specifying a subset Θ0

of Θ. The null hypothesis is often written as

H0 : θ ∈ Θ0

If Θ0 is a singleton, then the null hypothesis is called a simple hypothesis. If not,
then the null hypothesis is called a composite hypothesis.

A test of the null hypothesis amounts to a test of whether the observed data was
generated by Mθ for some θ ∈ Θ0. Formally, a test is a binary function φ mapping
the observed data x into {0, 1}. The decision rule is5

if φ(x) = 1, then reject H0

if φ(x) = 0, then do not reject H0

Remark 5.3.1. Note that, prior to implementation of the test, φ(x) is to be considered
as a random variable, the distribution of which depends on the distribution of x
and the function φ. Note also that failing to reject H0 should not be confused with
accepting H0! More on this below.

5Some texts identify tests with a rejection region, which is a subset R of RN . (RN is the set of N-
vectors—see chapter 2 for more.) The null is rejected if x ∈ R. This is equivalent to our formulation:
If a rejection region R is specified, then we take φ to be defined by φ(x) := 1{x ∈ R}. Conversely, if
φ is specified, then we take R as equal to {s ∈ RN : φ(s) = 1}.
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Remark 5.3.2. Although we are using the language of parametric hypothesis testing,
this is only for convenience. We can also think of θ as an arbitrary index over a
(possibly nonparametric) class of models.

The outcome of our test depends on the random sample x, and, being random, its
realization can be misleading. There are two different ways in which the realization
can mislead us. First, we can mistakenly reject the null hypothesis when it is in fact
true. This is called type I error. Second, we can fail to reject the null hypothesis
when it is false. This is called type II error.

The power function associated with the test φ is the function

β(θ) = Pθ{φ(x) = 1} (θ ∈ Θ)

In other words, β(θ) is the probability that the test rejects when the data is generated
by Mθ. Ideally, we would like β(θ) = 0 when θ ∈ Θ0, and β(θ) = 1 when θ /∈ Θ0.
In practice, this is usually difficult to achieve.

As discussed above, we tend to be conservative in rejecting the null, because we
don’t want to discard good theories. For this reason, it is traditional to keep the
probability of type I error small. Then, if our test tells us to reject the null, it’s
unlikely the null is true. Because of this, the standard procedure is to choose a small
number α such as 0.05 or 0.01, and then adjust the test such that

β(θ) ≤ α for all θ ∈ Θ0 (5.12)

If (5.12) holds, then the test is said to be of size α.

In constructing tests, a common (but not universal) set up is to define a real-valued
test statistic T and a critical value c, and then set6

φ(x) := 1{T(x) > c} (5.13)

The pair (T, c) then defines the test, and the rule becomes:

Reject H0 if and only if T(x) > c

6A minor point: A test statistic is a kind of statistic, in the sense that it is a function of the data.
Usually, statistics are thought of as being computable given the data. This means that they do not
depend on any unknown quantities. In the case of a test statistic, it is common to allow the test
statistic to depend on unknown parameters (a subset of Θ), with the caveat that the values of these
unknown parameters are all pinned down by the null hypothesis. (Otherwise the test cannot be
implemented.)
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Example 5.3.1. Suppose we “know” that x1, . . . , xN
IID∼ N (θ, 1) for some θ ∈ R,

but the value of θ is unknown. The null hypothesis is θ ≤ 0, or Θ0 = (−∞, 0]. To
construct a test, we seek a suitable test statistic. Since we want to make inference
about the mean, a natural choice for our statistic is the sample mean, so that

T(x) :=: T(x1, . . . , xN) := x̄N

Each c ∈ R now gives us a test via (5.13), with power function β(θ) = Pθ{x̄N > c}.
We can obtain a clearer expression for the power function by observing that x̄N ∼
N (θ, 1/N). As a result, if Φ is the cdf of the standard normal distribution on R and
z ∼ Φ, then

Pθ{x̄N ≤ c} = P{θ + N−1/2z ≤ c} = P{z ≤ N1/2(c− θ)} = Φ[N1/2(c− θ)]

∴ β(θ) = 1−Φ[N1/2(c− θ)] (5.14)

Given c, the power function is increasing in θ, because higher θ pushes up the mean
of x̄N, making the event {x̄N > c} more likely. Given θ, the function is decreasing
in c, because higher c makes the event {x̄N > c} less likely. A plot of β is presented
in figure 5.4 for two different values of c.7

5.3.3 Choosing Critical Values

Let’s think a bit more about the test in (5.13). Typically, the choice of T is suggested
by the problem. For example, if our hypothesis is a statement about the second mo-
ment of a random variable, then we might take T to be the sample second moment.
Once T is fixed, we need to adjust c such that (T, c) attains the appropriate size.
Thus, the standard procedure is to:

1. choose a desired size α according to our tolerance for type I error,

2. identify a suitable test statistic T, and

3. choose a critical value c so that (T, c) is of size α.

In performing the last step, it’s common to choose c such that (5.12) holds with
equality. In this case, the problem is to choose c to solve

α = sup
θ∈Θ0

Pθ{T(x) > c} (5.15)

7N is fixed at 10.
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Figure 5.4: The power function β

Figure 5.5 gives an illustration. In the figure, we’ve taken Θ0 to be the two element
set {θa, θb}. The blue line gives an imaginary distribution of T(x) when x ∼ Fθa ,
represented as a density. The black line gives the same for θb. Assuming that a
value of α be prescribed, the next step is to determine the value of c such that (5.15)
holds. Here, we choose c such that the largest of the two shaded areas is equal to α.

Example 5.3.2. Let’s look again at example 5.3.1, where x1, . . . , xN
IID∼ N (θ, 1) for

θ unknown, and our null hypothesis is θ ≤ 0. Given α, our task is to find the
appropriate critical value c so that the test (T, c) is of size α. To solve for c given α

we use (5.15). Applying the expression for the power function in (5.14), this becomes

α = sup
θ≤0
{1−Φ[N1/2(c− θ)]}

The right-hand side is increasing in θ, so the supremum is obtained by setting θ = 0.
Setting θ = 0 and solving for c, we obtain

c(α) := N−1/2Φ−1(1− α)

where Φ−1 is the quantile function of the standard normal distribution. In R, this
function can be evaluated using qnorm. For example,
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Figure 5.5: Determining the critical value

> alpha = 0.05

> qnorm(1 - alpha)

[1] 1.644854

Since Φ−1 is increasing, we see that smaller α corresponds to larger c(α)—we reduce
the probability of type I error by increasing the critical value that the mean x̄N must
obtain for rejection to occur. Also, higher N brings down c(α): More data allows us
to reduce the critical value without increasing the probability of rejecting a true null.

5.3.4 p-Values

Typically, a test that rejects at size 0.05 will also reject at size 0.1, but may not reject at
size 0.01. Lower α means less tolerance for type I error, and forces the critical value
to become larger. Hence, for a fixed value of the test statistic, the result of the test
may switch from reject to accept. A natural question, then, is: What is the smallest
value of α at which we can still reject a given test statistic? This value is called the
p-value.
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Let’s give a formal definition. Consider again the general parametric setting of §5.3.
We have a null hypothesis is H0 : θ ∈ Θ0 and, for each α ∈ (0, 1), a test (T, c(α)) of
size α. We assume here that c(α) is determined via the relationship in (5.15). In this
setting, the p-value of the test is defined as

p(x) := inf{α ∈ (0, 1) : c(α) < T(x)}

Roughly speaking, this is the α at which the test switches from accept to reject. Typ-
ically α 7→ c(α) is continuous, and in this case the expression for p(x) reduces to

p(x) := the α such that c(α) = T(x) (5.16)

Example 5.3.3. Recall the test (5.21). Here c(α) := Φ−1(1− α/2), and c(α) is contin-
uous in α, so we can apply the definition of p(x) in (5.16). To solve for p(x), then,
we need to solve for α in the expression Φ−1(1 − α/2) = |tN(x)|. With a bit of
rearranging and an application of symmetry (page 17), we obtain

p(x) = 2Φ(−|tN(x)|) (5.17)

5.3.5 Asymptotic Tests

As we saw in examples 5.3.1 and 5.3.2, constructing appropriate tests requires knowl-
edge of the distribution of the test statistic. In many cases, however, we know rela-
tively little about the distribution of the test statistic. Often we don’t want to make
parametric assumptions about the distribution of the underlying data x. And even if
we make such assumptions, it may still be hard to work out the implied distribution
of a given statistic T(x).

Fortunately, for many problems, the central limit theorem and its consequences pro-
vide an elegant solution: Even if we don’t know the distribution of the test statistic,
we may still be able to determine it’s asymptotic distribution via the CLT. Once we
know the asymptotic distribution, we have an idea of the power of the test, at least
for large samples, and can hopefully choose critical values to obtain an appropriate
size.

To go down this path we need to switch to a notion of asymptotic size, rather than
finite sample size. Writing βN instead of β to emphasize the fact that the power
function typically depends on sample size, a test is called asymptotically of size α

if
lim

N→∞
βN(θ) ≤ α for all θ ∈ Θ0 (5.18)

JOHN STACHURSKI January 10, 2014



5.3. HYPOTHESIS TESTS 169

To illustrate how we might go about constructing a test which is asymptotically
of size α, consider the data presented in figure 5.6. The histogram is of standard-
ized daily returns on the Nikkei 225 index from January 1984 until May 2009. Here
“standardized” means that we have subtracted the sample mean and divided by the
sample deviation. If the original returns were normally distributed, then the stan-
dardized returns would be approximately standard normal. The code for producing
the histogram is in the first part of listing 7. The data file can be downloaded at

http://johnstachurski.net/emet/nikkei_daily.txt

The standard normal density has been superimposed on the histogram in blue. We
can see that the fit is not particularly good. The histogram suggests that the density
of returns is more peaked and has heavier tails than the normal density. This is a
common observation for asset price returns.

Let’s think about making this analysis more precise by constructing an asymptotic
test. The construction of the test essentially “inverts” the confidence set in §5.2.3.
To begin, let Φ be the standard normal cdf, and let the null hypothesis be that stan-
dardized returns are IID draws from Φ. Let α be given, and let k1−α = K−1(1− α) be
the 1− α quantile of the Kolmogorov distribution K, as defined in (5.11). Finally, let
FN be the ecdf of the data. If the null hypothesis is true, then, by (5.10) on page 159,
we have √

N sup
s∈R
|FN(s)−Φ(s)| d→ K (5.19)

For the test

φN(x) := 1

{
√

N sup
s∈R
|FN(s)−Φ(s)| > k1−α

}
let βN(Φ) be the value of the power function when the null hypothesis is true. By
(5.19), we have

lim
N→∞

βN(Φ) = lim
N→∞

P

{
√

N sup
s∈R
|FN(s)−Φ(s)| > k1−α

}
= α

Hence (5.18) is verified, and the test is asymptotically of size α.

The value of the statistic
√

N sups∈R |FN(s)−Φ(s)| produced by listing 7 is 5.67. If
α = 0.05, then, as shown in §5.2.3, the critical value k1−α is 1.36. The test statistic
exceeds the critical value, and the null hypothesis is rejected.
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returns

−6 −4 −2 0 2 4 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 5.6: Standardized daily returns, Nikkei 225

Looking back on what we’ve done, there’s an obvious weakness in our approach.
Our null hypothesis was that standardized returns are IID draws from the standard
normal density. The rejection suggests this null is false, but it may be the IID as-
sumption rather than the normality assumption that makes our null a poor fit to
the data. The test we’ve implemented can be modified to tackle the case of depen-
dent data, but such a discussion is beyond the scope of these notes. See Negri and
Nishiyama (2010) for one such test and many references.

5.4 Use and Misuse of Testing

[roadmap]

5.4.1 Testing and Model Selection

To to think about testing and model selection in the context of econometrics, it’s
interesting to discuss the current state of hypothesis testing in macroeconomics in
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Listing 7 Testing normality

nikkei <- read.table("nikkei_daily.txt", header=T, sep=",")

dates <- as.Date(rev(nikkei$Date))

close <- rev(nikkei$Close)

returns <- diff(log(close))

data <- (returns - mean(returns)) / sd(returns)

hist(data , breaks =100, prob=T, xlab="returns",

ylab="", main="", xlim=c(-6,6))

xgrid <- seq(min(data), max(data), length =400)

lines(xgrid , dnorm(xgrid), col="blue")

FN <- function(s) return(mean(data <= s)) # ecdf

FN <- Vectorize(FN)

m <- max(abs(FN(xgrid) - pnorm(xgrid)))

print(sqrt(length(data)) * m)

particular. You are probably aware that in the 1970s, the rational expectations rev-
olution ushered in a brand new class of macroeconomic models. One of the first
things the proponents of rational expectations did was to test these models against
data. The results were disappointing. Thomas Sargent’s account runs as follows
(Evans and Honkapohja, 2005):

My recollection is that Bob Lucas and Ed Prescott were initially very en-
thusiastic about rational expectations econometrics. After all, it simply
involved imposing on ourselves the same high standards we had criti-
cized the Keynesians for failing to live up to. But after about five years of
doing likelihood ratio tests on rational expectations models, I recall Bob
Lucas and Ed Prescott telling me that those tests were rejecting too many
good models.

As a result, many proponents of these “good” models have moved away from for-
mal hypothesis testing in favor of so-called calibration. The consensus of this school
of though can be paraphrased as “No model is a true description of the real world.
Hence, I already know that my model is wrong. Rejection of my model using standard
inference tells me nothing new.”

This line of argument runs contrary to the standard paradigm under which most of
science and statistical testing takes place. The standard paradigm recognizes that all
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models are wrong. Given that all models are wrong, we try to cull old ones that per-
form poorly and produce new ones that perform better. The process of culling takes
place by statistical rejection. Some models are easily rejected. Others are harder
to reject. The overall outcome resembles survival of the fittest. Those models that
explain observed phenomena effectively, and, at the same time, are most difficult to
reject, will survive.8

On the other hand, it should be acknowledged that social science is not physics, and
our models tend to be more imperfect. For any given model a poor fit to the data can
usually be found along some dimension, thus enabling rejection. But perhaps some
of these models are still useful in guiding our thinking, and perhaps they represent
the best models we have for now. None of these are easy questions.

5.4.2 Accepting the Null?

power and lack of power. failing to reject doesn’t mean the null is right.

example: unit root tests.

example: diagnostic tests for regression.

5.5 Exercises

Ex. 5.5.1. Show that (5.7) is valid when (5.5) and (5.6) hold.

Ex. 5.5.2. Let α ∈ (0, 1) and set zα/2 := Φ−1(1 − α/2). Show that if tN(x)
d→

N (0, 1) whenever H0 is true, and TN(x) = |tN(x)|, the sequence of tests φN(x) :=
1{TN(x) > zα/2} is asymptotically of size α.

Ex. 5.5.3. Let x1, . . . , xN be an IID sample with mean θ and variance σ2. Assume that
both θ and σ are unknown. We wish to test the hypothesis H0 : θ = θ0. Consider the
statistic

tN :=
√

N
{

x̄N − θ0

sN

}
(5.20)

8Incidentally, given this description of model selection, it might appear there is a way for us to
produce a model that survives forever in the pool of currently acceptable theories, without ever
being culled via rejection: Just make sure that the model has no testable implications. However, this
strategy does not work, because a model with no testable implications cannot be considered as a
theory of anything. The standard definition of a “scientific” theory, as proposed by Karl Popper, is
that the theory has one or more testable implications. In other words, the theory can be falsified.
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With reference to exercise 5.5.2, show that the sequence of tests

φN(x) := 1{|tN| > zα/2} (5.21)

is asymptotically of size α.

Ex. 5.5.4. If a test is well designed, then the rejection probability will converge to
one as N → ∞ whenever H0 is false:

βN(θ)→ 1 as N → ∞ whenever θ ∈ Θ1

Such a test is said to be consistent. Show that the test in exercise 5.5.3 is consistent
whenever α ∈ (0, 1).9

Ex. 5.5.5 (Computational). The chi-squared goodness of fit test is used to test whether
or not a given data set x1, . . . , xN was generated from a particular discrete distribu-
tion, described by a pmf p1, . . . , pJ over values 1, . . . , J. More precisely, let x1, . . . , xN
be N random variables, each xn taking integer values between 1 and J. The null
hypothesis of the test is that the sample x1, . . . , xN is IID with P{xn = j} = pj for
n ∈ {1, . . . , N} and j ∈ {1, . . . , J}. The test statistic is given by

X := N
J

∑
j=1

(qj − pj)
2

pj
(5.22)

where qj is the fraction of the sample x1, . . . , xN taking the value j. Write a function in
R called chsqts that takes two arguments observations and p, where observations
is a vector storing the sample x1, . . . , xN, and p is a vector storing the values p1, . . . , pJ .
The function call chsqts(observations, p) should return the value X in equation
(5.22).10

Ex. 5.5.6 (Computational). This exercise continues on from exercise 5.5.5. Under
the null hypothesis, X in (5.22) is asymptotically chi-squared with J − 1 degrees
of freedom. Let J = 3 with p1 = 0.2, p2 = 0.2 and p3 = 0.6. Let N = 20. By
repeatedly simulating 20 IID observations x1, . . . , x20 from this pmf,11 generate 5,000
independent observations of the statistic X, and store them in a vector called obsX.
Plot the ecdf of obsX. In the same figure, plot the chi-squared cdf with 2 degrees of
freedom. The functions should be close.12

9Hint: In essence, you need to show that the absolute value of the test statistic |tN | in (5.20)
diverges to infinity when θ 6= θ0. Try the add and subtract strategy, replacing the expresion x̄N − θ0
in (5.20) with (x̄N − θ) + (θ − θ0).

10R has a built-in function called chisq.test for implementing the chi-squared goodness of fit
test. Do not use this built-in function in your solution.

11In particular, draw each xn such that P{xn = j} = pj for j = 1, 2, 3.
12You can improve the fit further by taking N larger. The reason is that the fit is only asymptotic,

rather than exact, and N = 20 is not a large sample.
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5.5.1 Solutions to Selected Exercises

Solution to Exercise 5.5.1. We aim to show that (θ̂N − θ)/ se(θ̂N) converges in dis-

tribution to a standard normal when
√

N(θ̂N − θ)
d→ N (0, v(θ)) and

√
N se(θ̂N)

p→√
v(θ). To see this, observe that

θ̂N − θ

se(θ̂N)
= ξNηN where ξN :=

√
N(θ̂N − θ)√

v(θ)
and ηN :=

√
v(θ)√

N se(θ̂N)

Using the various rules for converges in probabilty and distribution (check them

carefully—see facts 1.4.1 and 1.4.4) we obtain ξN
d→ Z ∼ N (0, 1) and ηN

p→ 1.

Applying Slutsky’s theorem (page 34) now gives ξNηN
d→ Z, as was to be shown.

Solution to Exercise 5.5.2. Fix α ∈ (0, 1) and let z ∼ N (0, 1). In view of (1.14) on

page 21, we have P{|z| > zα/2} = α. If H0 is true, then tN(x)
d→ z by assumption.

Since g(s) := |s| is continuous, fact 1.4.4 on page 34 implies that |tN(x)|
d→ |z|. As a

result, we have

lim
N→∞

βN(θ) = lim
N→∞

Pθ{|tN(x)| > zα/2} = P{|z| > zα/2} = α

This confirms (5.18), and the exercise is done.

Solution to Exercise 5.5.3. In §4.2.2 we showed that the sample standard deviation
sN defined in (4.2) is consistent for the standard deviation σ. Appealing to (1.30) on
page 37 and fact 1.4.5 on page 34, we can see that

tN :=
√

N
{

x̄N − θ0

sN

}
=

σ

sN

√
N
{

x̄N − θ0

σ

}
is asymptotically standard normal whenever H0 is true (i.e., θ0 = θ). It follows that
exercise 5.5.2 can be applied. In particular, we can state that for zα/2 := Φ−1(1−
α/2), the test is asymptotically of size α.
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Chapter 6

Linear Least Squares

[roadmap]

6.1 Least Squares

[roadmap]

6.1.1 Multivariate Least Squares and ERM

Let’s consider a multivariate version of the regression problem we studied in §4.6.
Suppose we repeatedly observe a vector input x to a system, followed by a scalar
output y. Both are random, and x takes values in RK. We assume that the input-
output pairs (x1, y1), . . . , (xN, yN) we observe are all draws from some common joint
distribution on RK+1. This distribution is unknown to us. Our aim is to predict
new output values from observed input values. In particular, our problem for this
chapter is to

choose a function f : RK → R such that f (x) is a good predictor of y

Throughout this chapter, we will be using quadratic loss as our measure of “good-
ness”, so our expected loss (risk) from given function f is

R( f ) := E [(y− f (x))2] (6.1)
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As we learned in chapter 3, the minimizer of the risk is f ∗(x) = E [y | x]. Since the
underlying distribution is not known, we cannot compute this conditional expecta-
tion. Instead, we will use the principle of empirical risk minimization instead, re-
placing the risk function with the empirical risk before minimizing. In other words,
we solve

min
f∈F

R̂( f ) where R̂( f ) :=
1
N

N

∑
n=1

(yn − f (xn))
2

This is the general least squares problem. The function f is chosen from a set of
candidate functions F mapping RK into R. As before, F is called the hypothesis
space.

When we presented the theory of empirical risk minimization in §4.6, we assumed
that the input-output pairs (x1, y1), . . . , (xN, yN) were independent of each other.
If this is true, then, for fixed f , the scalar random variables (yn − f (xn))2 are also
independent (fact 2.4.1 on page 72), and, by the law of large numbers,

R̂( f ) :=
1
N

N

∑
n=1

(yn − f (xn))
2 p→ E [(y− f (x))2] = R( f ) (6.2)

This gives a fundamental justification for the empirical risk minimization principle:
for large N, the empirical risk and the true risk are close.

Let us note at this stage that (6.2) can hold under much weaker assumptions than
independence. For example, (6.2) can hold when the input-output pairs form a time
series (each n is a point in time), and correlation between the input-output pairs is
present, provided that this correlation dies out sufficiently quickly over time. An
extensive discussion of this ideas is given in chapter 8. For now, we will not make
any particular assumptions. Just keep in mind that validity of (6.2) is a minimal
requirement to justify the approach that we are taking.

Let’s now turn to the hypothesis space F . If we take F to be the set of all functions
from RK to R, we will usually be able to make the empirical risk R̂( f ) arbitrarily
small by choosing a function f such that yn− f (xn) is very small for all n. However,
as we discussed extensively in §4.6.2, this is not the same think as making the risk
small, which is what we actually want to minimize. Thus, F must be restricted, and
in this chapter we consider the case F = L, where L is the linear functions from RK

to R. That is,

L := { all functions ` : RK → R, where `(x) = b′x for some b ∈ RK} (6.3)
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The problem we need to solve is then min`∈L∑N
n=1(yn − `(xn))2, or, more simply,

min
b∈RK

N

∑
n=1

(yn − b′xn)
2 (6.4)

(The constant 1/N has been dropped since it does not affect the minimizer.) This is
the multivariate version of (4.25) on page 141. Although our presentation is rather
modern, the idea of choosing b to minimize (6.4) is intuitive, and this optimization
problem has a very long tradition. It dates back at least as far as Carl Gauss’s work
on the orbital position of Celes, published in 1801.

One might well ask whether the choice F = L is suitable for most problems we
encounter. This is an excellent question. It may not be. However, setting F = L
allows us to obtain an analytical expression for the minimizer, which greatly sim-
plifies computations. The derivation is in §6.1.2 below. Moreover, the technique
has a very natural extension from L to a very broad class of functions, as described
in §6.2.1.

6.1.2 The Least Squares Estimator

The next step is to solve (6.4). In fact, armed with our knowledge of overdetermined
systems (see §3.2), we already have all the necessary tools. This will be more obvious
after we switch to matrix notation. To do this, let

y :=


y1

y2
...

yN

 , xn :=


xn1

xn2
...

xnK

 = n-th observation of all regressors (6.5)

and

X :=


x′1
x′2
...

x′N

 :=:


x11 x12 · · · x1K
x21 x22 · · · x2K

...
...

...
xN1 xN2 · · · xNK

 (6.6)

We will use the notational convention colk(X) := the k-th column of X. In other
words, colk(X) is all observations of the k-th regressor. Throughout this chapter, we
will always maintain the following assumption on X, which is usually satisfied in
applications unless you’re doing something silly.
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Assumption 6.1.1. N > K and the matrix X is full column rank.

Let’s transform the minimization problem (6.4) into matrix form. Note that, for any
b ∈ RK, we have

Xb =


x′1b
x′2b

...
x′Nb

 =


b′x1

b′x2
...

b′xN


Regarding the objective function in (6.4), with a little bit of effort, you will be able to
verify that

N

∑
n=1

(yn − b′xn)
2 = ‖y− Xb‖2

Moreover, since increasing transforms don’t affect minimizers (see §13.2), we have

argmin
b∈RK

‖y− Xb‖2 = argmin
b∈RK

‖y− Xb‖ (6.7)

In summary, any solution to the right-hand side of (6.7) is a minimizer of (6.4) and
vice versa. The significance is that we already know now to solve for the minimizer
on the right-hand side of (6.7). By theorem 3.2.1 (page 91), the solution is

β̂ := (X′X)−1X′y (6.8)

Traditionally, this random vector β̂ is called the least squares estimator, or the OLS
estimator. (Right now, this terminology doesn’t fit well with our presentation, since
we haven’t really assumed that β̂ is an estimator of anything in particular. In chap-
ter 7 we will add some parametric structure to the underlying model, and β̂ will
become an estimator of an unknown parameter vector β.)

6.1.3 Standard Notation

There’s a fair bit of notation associated with linear least squares estimation. Let’s try
to collect it in one place. First, let P and M be the projection matrix and annihilator
associated with X, as defined on page 92. The vector Py = Xβ̂ is often denoted ŷ,
and called the vector of fitted values:

ŷ := Xβ̂ = Py
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The n-th fitted value ŷn is the prediction x′n β̂ associated with OLS estimate and the
n-th observation xn of the input vector.

The vector My is often denoted û, and called the vector of residuals:

û := My = y− ŷ

The vector of residuals corresponds to the error that occurs when y is approximated
by its orthogonal projection Py. From theorem 3.1.4 on page 89 we have

My ⊥ Py and y = Py + My (6.9)

In other words, y can be decomposed into two orthogonal vectors Py and My,
where the first represents the best approximation to y in rng(X), and the second
represents the error.

Related to the fitted values and residuals, we have some standard definitions:

• Total sum of squares :=: TSS := ‖y‖2.

• Sum of squared residuals :=: SSR := ‖My‖2.

• Explained sum of squares :=: ESS := ‖Py‖2.

By (6.9) and the Pythagorean law (page 84) we have the following fundamental
relation:

TSS = ESS + SSR (6.10)

6.2 Transformations of the Data

[roadmap]

6.2.1 Basis Functions

Let’s now revisit the decision to set F = L made in §6.1.1. As we saw in §4.6.2, the
choice of F is crucial. In that section, we considered data generated by the model

y = cos(πx) + u where u ∼ N(0, 1) (6.11)
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We imagined that this model was unknown to us, and attempted to minimize risk
(expected quadratic loss) by minimizing empirical risk with different choices of hy-
pothesis space F . We saw that if F is too small, then no function in F provides a
good fit to the model, and both the empirical risk and the risk are large (figure 4.18
on page 145). This is called underfitting. Conversely, if F is too big, then the empir-
ical risk can be made small, but this risk itself is large (figure 4.21 on page 146). We
are paying too much attention to one particular data set, causing overfitting.

As we learned in §3.3, in our quadratic loss setting, the minimizer of the risk is
the conditional expectation of y given x. Since our goal is to make the risk small,
it would be best if F contained the conditional expectation. As our information
is limited by the quantity of data, we would also like F to be small, so that the
minimizer of the empirical risk has to be “close” to the risk minimizer E [y | x]. Of
course choosing F in this way is not easy since E [y | x] is unknown. The ideal case
is where theory guides us, providing information about E [y | x].

From such theory or perhaps from more primitive intuition, we may suspect that,
for the problem at hand, the conditional expectation E [y | x] is nonlinear. For ex-
ample, many macroeconomic phenomena have a distinctly self-reinforcing flavor
(poverty traps, dynamic network effects, deleveraging-induced debt deflation, etc.),
and self-reinforcing dynamics are inherently nonlinear. This seems to suggest that
setting F = L is probably not appropriate.

Fortunately, it is easy to extend our previous analysis to a broad class of nonlin-
ear functions. To do so, we first transform the data using some arbitrary nonlinear
function φ : RK → RJ . The action of φ on x ∈ RK is

x 7→ φ(x) =


φ1(x)
φ2(x)

...
φJ(x)

 ∈ RJ

In this context, the individual functions φ1, . . . , φJ mappingRK intoR are referred to
as basis functions. Now we apply linear least squares estimation to the transformed
data. Formally, we choosing the hypothesis space to be

Fφ := {all functions ` ◦φ, where ` is a linear function from RJ to R}

The empirical risk minimization problem is then

min
`

N

∑
n=1
{yn − `(φ(xn))}2 = min

γ∈RJ

N

∑
n=1

(yn − γ′φ(xn))
2 (6.12)
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Switching to matrix notation, let

φn := φ(xn) and Φ :=


φ′1
φ′2
...

φ′N

 =


φ1(x1) · · · φJ(x1)

φ1(x2) · · · φJ(x2)
... · · · ...

φ1(xN) · · · φJ(xN)

 ∈ RN×J

In transforming (6.12) into matrix form, the objective function can be expressed as

N

∑
n=1

(yn − γ′φn)
2 = ‖y−Φγ‖2

Once again, increasing functions don’t affect minimizers, and the problem (6.12)
becomes

argmin
γ∈RJ

‖y−Φγ‖ (6.13)

Assuming that Φ is full column rank, the solution is

γ̂ := (Φ′Φ)−1Φ′y

Example 6.2.1. Suppose that K = 1, and xn is scalar valued. Consider the monono-
mial basis functions φj(x) = xj−1, so that

γ′φ(xn) = γ′φn = γ′


x0

n
x1

n
...

x J−1
n

 =
J

∑
j=1

γjx
j−1
n (6.14)

This case corresponds to univariate polynomial regression, as previously discussed
in §4.6.2. There is a theorem proved by Karl Weierstrass in 1885 which states that, for
any given continuous function f on a closed interval ofR, there exists a polynomial
function g such that g is arbitrarily close to f . On an intuitive level, this means that
if we take J large enough, the relationship in (6.14) is capable of representing pretty
much any (one-dimensional) nonlinear relationship we want.

In most of this chapter, we return to the elementary case of regressing y on x, rather
than on some nonlinear transformation φ(x). However, no loss of generality is en-
tailed, as we can just imagine that the data has already been transformed, and x is
the result. Similarly, we’ll use X to denote the data matrix instead of Φ, and β̂ to
denote the least squares estimator (X′X)−1X′y.
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6.2.2 The Intercept

There’s one special transformation that is worth treating in more detail: Adding an
intercept to our regression. To add an intercept, we use the transformation

φ(x) =
(

1
x

)
=


1
x1
...

xK


We’ll call the resulting matrix X instead of Φ. (As mentioned at the end of the last
section, we’re going to use X to denote the data matrix from now on, even though
the data it contains may have been subject to some transformations. What this
means in the present case is that the first column of X is now 1, and each of the
remaining columns of X contains N observations on one of the non-constant regres-
sors.) In practice, adding an intercept means fitting an extra parameter, and this
extra degree of freedom allows a more flexible fit in our regression.

One consequence of adding an intercept is that the vector of residuals must sum to
zero. To see why this is the case, observe that

1′My = 1′(I− P)y = 1′y− 1′Py = 1′y− (P′1)′y = 1′y− (P1)′y

where the last equality uses the fact the P is symmetric (exercise 3.4.10). Moreover,
as exercise 6.4.5 asks you to confirm, we have P1 = 1 whenever 1 ∈ rng(X). Clearly
1 ∈ rng(X) holds, since 1 is a column vector of X.1 Therefore,

1′My = 1′y− (P1)′y = 1′y− 1′y = 0

In other words, the vector of residuals sums to zero.

It’s also the case that if the regression contains the intercept, then the mean of the
fitted values ŷ = Py is equal to the mean of y. This follows from the previous
argument, because we now have

1
N

N

∑
n=1

ŷn =
1
N

1′ŷ =
1
N

1′Py =
1
N

1′y =
1
N

N

∑
n=1

yn

1Remember that rng(X) is the span of the columns of X, and clearly each column is in the span.
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6.3 Goodness of Fit

In traditional econometrics, goodness of fit refers to the in-sample fit of the model
to the data (i.e., how well the model fits the observed data, as opposed to the po-
tentially more important question of how well the model would predict new y from
new x). The most common measure of goodness of fit is the coefficient of determi-
nation. It is usually represented by the symbol R2 (read “R squared”), and defined
as

R2 :=
ESS

TSS
=
‖Py‖2

‖y‖2

For any X and y we have 0 ≤ R2 ≤ 1. The nontrivial inequality R2 ≤ 1 follows from
the fact that for P and any point y, we always have ‖Py‖ ≤ ‖y‖. This was discussed
in theorem 3.1.3 (page 86), and the geometric intuition can be seen in figure 3.4. The
closer is y to the subspace rng(X) that P projects onto, the closer ‖Py‖/‖y‖ will be
to one. An extreme case is when R2 = 1, a so-called perfect fit. If R2 = 1, then, as
exercise 6.4.7 asks you to verify, we must have Py = y and y ∈ rng(X).

Historically, R2 has often been viewed as a one-number summary of the success of a
regression model. As many people have noted, there are all sorts of problems with
viewing R2 in this way. In this section we cover some of the issues.

6.3.1 R Squared and Empirical Risk

One issue that arises when we equate high R2 with successful regression is that we
can usually make R2 arbitrarily close to one in a way that nobody would consider
good science: By putting as many regressors as we can think of into our regression.
Intuitively, as we add regressors we increase the column space of X, expanding it out
towards y, and hence increasings R2. Put differently, the larger the column space X,
the better we can approximate a given vector y with an element of that column
space.

To see this more formally, consider two groups of regressors, Xa and Xb. We assume
that Xb is larger, in the sense that every column of Xa is also a column of Xb. Let Pa

and Pb be the projection matrices corresponding to Xa and Xb respectively. Let y be
given, and let R2

a and R2
b be the respective R squareds:

R2
a :=

‖Pay‖2

‖y‖2 and R2
b :=

‖Pby‖2

‖y‖2
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Since Xb is larger than Xa, it follows that the column space of Xa is contained in the
column space of Xb (exercise 6.4.11). It then follows from fact 3.1.2 on page 88 that
PaPby = Pay. Using this fact, and setting yb := Pby, we obtain

R2
a

R2
b
=

(
‖Pay‖
‖Pby‖

)2

=

(
‖PaPby‖
‖Pby‖

)2

=

(
‖Payb‖
‖yb‖

)2

≤ 1

where the final inequality follows from theorem 3.1.3 on page 86. Hence R2
b ≥ R2

a,
and regressing with Xb produces (weakly) larger R2.

Let’s look at this phenomenon from a more statistical perspective. There is a close
connection between R2 and empirical risk. (See (4.21) on page 140 for the definition
of the latter.) The R2 of a regression of y on X can be written as R2 = 1− SSR/‖y‖2. If
we alter the regressors, we change SSR = ‖My‖2 while leaving other terms constant.
In particular, if we raise R2 by including more regressors, then the increase in R2

occurs because SSR is falling. Since

SSR = ‖My‖2 =
N

∑
n=1

(yn − β̂
′
xn)

2

we see that SSR is proportional to the empirical risk

R̂( f ) =
1
N

N

∑
n=1

(yn − f (xn))
2

of our fitted function f (x) = β̂
′
x. Thus, the increase in R2 is due to a fall in empirical

risk. If we can drive the empirical risk to zero, then SSR = 0, R2 = 1 and we have a
perfect fit.

We can understand what is happening by recalling our discussion of empirical risk
minimization in §4.6.2. As we discussed, when we use empirical risk minimization,
our true goal is to minimize risk, rather than empirical risk. Empirical risk is just
proxy for risk, the latter being unobservable. Moreover, if we allow ourselves un-
limited flexibility in fitting functional relationships, we can make the empirical risk
arbitrarily small, but this does not guarantee small risk. In fact, this excess of at-
tention to the data set we have in hand often causes the risk to explode. Such an
outcome was presented in figure 4.17 on page 143.

Let’s look at a small simulation that illustrates the idea. Suppose that xn and yn are
draws from a uniform distribution on [0, 1]. We will draw xn and yn independently,
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Figure 6.1: Minimizing empirical risk on independent data

so there is no relationship at all between these two variables. We will fit the poly-
nomial β1 + β2x + β3x2 + · · · βKxK−1 to the data for successively larger K. In other
words, we will regress y on X = (xk−1

n )k,n where n = 1, . . . , N and k = 1, . . . , K.
Incrementing K by one corresponds to one additional regressor.

A simulation and plot is shown in figure 6.1. Here K = 8, so we are fitting a rela-
tively flexible polynomial. Since x and y are independent, the best guess of y given
x is just the mean of y, which is 0.5. Nevertheless, the polynomial minimizes em-
pirical risk by getting close to the sample points in this particular draw of observations.
This reduces SSR and increases the R2. Indeed, for this regression, the R2 was 0.87.
Increasing K to 25, I obtained an R2 of 0.95. (The code is given in listing 8.) By this
measure, the regression is very successful, even though we know there is actually
no relationship whatsoever between x and y.

6.3.2 Centered R squared

Another issue with R2 is that it is not invariant to certain kinds of changes of units.
This problem is easily rectified, by using the so-called centered R2 in place of R2.

JOHN STACHURSKI January 10, 2014



6.3. GOODNESS OF FIT 186

Listing 8 Generating the sequence of R2

set.seed (1234)

N <- 25

y <- runif(N)

x <- runif(N)

X <- rep(1, N)

KMAX <- 25

for (K in 1:KMAX) {

X <- cbind(X, x^K)

results <- lm(y ~ 0 + X)

Py2 <- sum(results$fitted.values ^2)

y2 <- sum(y^2)

cat("K =", K, "R^2 =", Py2 / y2 , "\n")

}

The main ideas are presented below.

First, R2 is invariant to changes of units that involve rescaling of the regressand y
(dollars versus cents, kilometers versus miles, etc.) because if y is scaled by α ∈ R,
then

‖Pαy‖2

‖αy‖2 =
‖αPy‖2

‖αy‖2 =
α2‖Py‖2

α2‖y‖2 =
‖Py‖2

‖y‖2

On the other hand, when the regression contains an intercept, R2 is not invariant to
changes of units that involve addition or subtraction (actual inflation versus infla-
tion in excess of a certain level, income versus income over a certain threshold, etc.).
To see this, let’s compare the R2 associated with y with that associated with y + α1,
where α ∈ R. The R2 in the latter case is

‖P(y + α1)‖2

‖y + α1‖2 =
‖Py + αP1‖2

‖y + α1‖2 =
‖Py + α1‖2

‖y + α1‖2 =
α2‖Py/α + 1‖2

α2‖y/α + 1‖2 =
‖Py/α + 1‖2

‖y/α + 1‖2

where the second inequality follows from the fact that 1 ∈ rng(X). Taking the limit
as α → ∞, we find that the R squared converges to one. In other words, we can
make the R squared as large as we like, just by a change of units.

For this reason, many economists and statisticians use the centered R squared rather
than the R squared, at least when the regression contains an intercept. For the
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purposes of this section, let’s assume that this is the case (or, more generally, that
1 ∈ rng(X)). The centered R squared is defined as

R2
c :=

‖PMcy‖2

‖Mcy‖2 =
‖McPy‖2

‖Mcy‖2 (6.15)

where
Mc := I− 1(1′1)−11′ = I− 1

N
11′ (6.16)

is the annihilator associated with 1. The equality of the two expressions for R2
c is left

as an exercise (exercise 6.4.12). Hopefully it is clear that adding a constant to each
element of y will have no effect on R2

c .

The centered R squared can be re-written (exercise 6.4.13) as

R2
c =

∑N
n=1(ŷn − ȳ)2

∑N
n=1(yn − ȳ)2

(6.17)

It is a further exercise (exercise 6.4.16) to show that, in the case of the simple re-
gression, the centered R squared is equal to the square of the sample correlation
between the regressor and regressand, as defined in (4.4) on page 113. Thus, cen-
tered R squared can be thought of as a measure of correlation. As discussed below,
correlation should not be confused with causation.

6.3.3 A Note on Causality

You have probably heard R2 interpreted as measuring the “explanatory power” of
the regressors in a particular regression. The idea is that regression amounts to
decomposing y into the sum of two orthogonal parts, the fitted values Py and the
residuals My. By the Pythagorean theorem, the squared norm ‖y‖2 =: TSS of y can
then be represented ‖Py‖2 =: ESS plus ‖My‖2 =: SSR, as in (6.10). This is sometimes
paraphrased as “the total variation in y is the sum of explained and unexplained
variation.” The value of R2 is then claimed to be the fraction of the variation in y
“explained” by the regressors.

This is a poor choice of terminology, because the notion that the regressors “ex-
plain” variation in y suggests causation, and R2 says nothing about causation per
se. Instead, R2 is better thought of as a measure of correlation (see §6.3.2). As has
been observed on many occasions, correlation and causation are not the same thing.
Some informal examples are as follows:
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• We often see car crashes and ambulances together (correlation). This does not
imply that ambulances cause crashes.

• It has been observed that motorcycles fitted with ABS are less likely to be in-
volved in accidents than those without ABS. Does that mean fitting ABS to a
given motorcycle will reduce the probability that bike is involved in an acci-
dent? Perhaps, but another likely explanation is selection bias in the sample—
cautious motorcyclists choose bikes with ABS, while crazy motorcyclists don’t.

• Suppose we observe that people sleeping with their shoes on often wake up
with headaches. One possible explanation is that that wearing shoes to bed
causes headaches. A more likely explanation is that both phenomena are
caused by too many pints at the pub the night before.

Identifying causality in statistical studies can be an extremely difficult problem. This
is especially so in the social sciences, where properly controlled experiments are
often costly or impossible to implement. (If we stand someone on a bridge and tell
them to jump, are they more likely to do so? Try asking your national research body
to fund that experiment.) An excellent starting point for learning more is Freedman
(2009).

6.4 Exercises

Ex. 6.4.1. Argue that the sample mean of a random sample y1, . . . , yN from a given
distribution F can be viewed as a least squares estimator of the mean of F.

Ex. 6.4.2. Let’s show that β̂ solves the least squares problem in a slightly different
way: Let b be any K× 1 vector, and let β̂ := (X′X)−1X′y.

1. Show that ‖y− Xb‖2 = ‖y− Xβ̂‖2 + ‖X(β̂− b)‖2.

2. Using this equality, argue that β̂ is the minimizer of ‖y− Xb‖2 over all K × 1
vectors b.

Ex. 6.4.3. Verify that ∑N
n=1(yn − b′xn)2 = ‖y− Xb‖2.

Ex. 6.4.4. Show carefully that any solution to minb∈RK ‖y− Xb‖2 is also a solution
to minb∈RK ‖y− Xb‖, and vice versa.2

2You can use the ideas on optimization in the appendix, but provide your own careful argument.
Make sure you use the definition of a minimizer in your argument.
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Ex. 6.4.5. Explain why P1 = 1 whenever 1 ∈ rng(X).3

Ex. 6.4.6. Show that PM = MP = 0. Using this fact (and not the orthogonal projec-
tion theorem), show that the vector of fitted values and the vector of residuals are
orthogonal.

Ex. 6.4.7. Show that if R2 = 1, then Py = y and y ∈ rng(X).

Ex. 6.4.8. Suppose that the regression contains an intercept, so that the first column
of X is 1. Let ȳ be the sample mean of y, and let x̄ be a 1× K row vector such that
the k-th element of x̄ is the sample mean of the k-th column of X. Show that ȳ = x̄β̂.

Ex. 6.4.9. Show that if R2 = 1, then every element of the vector of residuals is zero.

Ex. 6.4.10. Suppose the regression contains an intercept. Let Mc be as defined in
(6.16). Show that

‖My‖2 = ‖Mcy‖2 − ‖PMcy‖2 (6.18)

always holds.4

Ex. 6.4.11. Let Xa and Xb be N × Ka and N × Kb respectively. Suppose that every
column of Xa is also a column of Xb. Show that rng(Xa) ⊂ rng(Xb).

Ex. 6.4.12. Confirm the equality of the two alternative expressions for R2
c in (6.15).

Ex. 6.4.13. Verify the expression for R2
c in (6.17).

Ex. 6.4.14. Show that the coefficient of determination R2 is invariant to a rescaling
of the regressors (where all elements of the data matrix X are scaled by the same
constant).

Ex. 6.4.15. Let x := (x1, . . . , xN) and y := (y1, . . . , yN) be sequences of scalar random
variables. Show that the sample correlation ρ̂ between x and y (defined in (4.4) on
page 113) can be written as

ρ̂ =
(Mcx)′(Mcy)
‖Mcx‖‖Mcy‖

Ex. 6.4.16. (Quite hard) Show that, in the case of the simple regression model
(see §7.3.3), R2

c is equal to the square of the sample correlation between x and y.

3Hint: Refresh your memory of theorem 3.1.3 on page 86.
4Hints: See fact 3.1.5 on page 90 and the Pythagorean law (page 84).
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Ex. 6.4.17 (Computational). Build an arbitrary data matrix X by simulation. Con-
struct M and calculate MX. The resulting matrix should have all entries very close
to (but not exactly) zero. Test the orthogonality of My and Py. The inner product
should be very close to (but not exactly) zero.

Ex. 6.4.18 (Computational). Build an arbitrary data set X, y by simulation. Run
a regression with the intercept, and record the values of the estimated coefficients
of the non-constant (i.e., k ≥ 2) regressors. Confirm that these values are equal to
the estimated coefficients of the no-intercept regression after all variables have been
centered around their mean.

Ex. 6.4.19 (Computational). To be written: [R squared increases–see file rsquared.R]

Ex. 6.4.20 (Computational). In §12.6.4, we discussed how the direct method of com-
puting the OLS estimate via the expression β̂ = (X′X)−1X′y may be problematic in
some settings. The difficulty is inverting the matrix (X′X)−1 when it is large and
almost singular.5 To see this in action, calculate the coefficients of (6.14) for succes-
sively higher and higher values of K, where each regression uses the same set of
observations x = (x1, . . . , xN) and y = (y1, . . . , yN). (Example 6.2.1 explains how
to estimate the coefficients using multiple regression.) Let N = 20 and let x be an
evenly spaced grid on [0, 1]. Generate y as yn = xn +N (0, 1). In each round of the
loop, calculate the regression coefficients using first lm and then the direct method
(computing (X′X)−1 via the function solve). Set the program running in an infi-
nite loop,6 where each iteration, print the current degree of the polynomial and the
coefficients from the two methods. You should find that the direct method fails first.

6.4.1 Solutions to Selected Exercises

Solution to Exercise 6.4.1. Letting µ := E [yn] we can write yn = µ+ un when un :=
yn − µ. In other words, y = 1µ + u. The OLS estimate of µ is

µ̂ := (1′1)−11′y =
1
N

1′y =
1
N

N

∑
n=1

yn = ȳN

Reading right to left, the sample mean of y is the OLS estimate of the mean.

5In this setting, the inversion routine involves calculating many very small numbers. Since the
amount of memory allocated to storing each of these numbers is fixed, the result of the calculations
may be imprecise.

6To set up an infinite loop, start with while(TRUE). To exist from an infinite loop running in the
terminal, use control-C.
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Solution to Exercise 6.4.2. Part 2 follows immediately from part 1. Regarding part
1, observe that

‖y− Xb‖2 = ‖y− Xβ̂ + X(β̂− b)‖2

By the Pythagorean law, the claim

‖y− Xb‖2 = ‖y− Xβ̂‖2 + ‖X(β̂− b)‖2

will be confirmed if y − Xβ̂ ⊥ X(β̂ − b). This follows from the definition of β̂,
because for arbitrary a ∈ RK we have

(aX)′(y− Xβ̂) = a′(X′y− X′X(X′X)−1X′y) = a′(X′y− X′y) = 0

Solution to Exercise 6.4.4. Let β̂ be a solution to

min
b∈RK

‖y− Xb‖2

which is to say that

‖y− Xβ̂‖2 ≤ ‖y− Xb‖2 for any b ∈ RK

If a and b and nonnegative constants with a ≤ b, then
√

a ≤
√

b, and hence

‖y− Xβ̂‖ ≤ ‖y− Xb‖ for any b ∈ RK

In other words, β̂ is a solution to

min
b∈RK

‖y− Xb‖

The “vice versa” argument follows along similar lines.

Solution to Exercise 6.4.7. If R2 = 1, then, by (6.10) on page 179, we have ‖My‖2 =

0, and hence have My = 0. Since My + Py = y, this implies that Py = y. But then
y ∈ rng(X) by 5 of theorem 3.1.3.

Solution to Exercise 6.4.9. If R2 = 1, then ‖Py‖2 = ‖y‖2, and hence

‖y‖2 = ‖Py‖2 + ‖My‖2 = ‖y‖2 + ‖My‖2

Therefore ‖My‖2 = 0, and, by fact 2.1.1 on page 52, My = 0.
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Solution to Exercise 6.4.10. Theorem 3.1.4 tells us that for any conformable vector z
we have z = Pz+Mz. where the two vectors on the right-hand side are orthogonal.
Letting z = Mcy, we obtain

Mcy = PMcy + MMcy

From fact 3.1.5 we have MMcy = My. Using this result, orthogonality and the
Pythagorean law, we obtain

‖Mcy‖2 = ‖PMcy‖2 + ‖My‖2

Rearranging gives (6.18)

Solution to Exercise 6.4.11. It suffices to show that if z ∈ rng(Xa), then z ∈ rng(Xb).
Let x1, . . . , xJ be the columns of Xa and let x1, . . . , xJ+M be the columns of Xb. If
z ∈ rng(Xa), then

z =
J

∑
j=1

αjxj

for some scalars α1, . . . , αJ . But then

z =
J

∑
j=1

αjxj +
J+M

∑
j=J+1

0 xj

In other words, z ∈ rng(Xb).

Solution to Exercise 6.4.12. It is sufficient to show that

PMc = McP

Since 1 ∈ rng(X) by assumption, we have P1 = 1, and 1′P = (P′1)′ = (P1)′ = 1′.
Therefore P11′ = 11′P, and

PMc = P− 1
N

P11′ = P− 1
N

11′P = McP

Solution to Exercise 6.4.13. It suffices to show that

‖PMcy‖2 =
N

∑
n=1

(ŷn − ȳ)2
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This is the case because

N

∑
n=1

(ŷn − ȳ)2 = ‖Py− 1ȳ‖2 = ‖Py− P1ȳ‖2 = ‖P(y− 1ȳ)‖2 = ‖PMcy‖2

Solution to Exercise 6.4.14. This follows immediately from the definition of R2, and
the fact that, for any α 6= 0,

P = X(X′X)−1X =
α2

α2 X(X′X)−1X = (αX)((αX)′(αX))−1(αX)

Solution to Exercise 6.4.16. From exercise 6.4.15, the squared sample correlation be-
tween x and y can be written as

ρ̂2 =
[(Mcx)′(Mcy)]2

‖Mcx‖2‖Mcy‖2

On the other hand, we have

R2
c =
‖McPy‖2

‖Mcy‖2

Therefore it suffices to show that, for the simple linear regression model in §7.3.3,
we have

‖McPy‖ = |(Mcx)′(Mcy)|
‖Mcx‖ (6.19)

Let X = (1, x) be the data matrix, where the first column is 1 and the second column
is x. Let

β̂1 := ȳ− β̂2x̄ and β̂2 :=
(Mcx)′(Mcy)
‖Mcx‖2

be the OLS estimators of β1 and β2 respectively (see §7.3.3). We then have

Py = Xβ̂ = 1β̂1 + xβ̂2

∴ McPy = McXβ̂ = Mcxβ̂2

∴ ‖McPy‖ = ‖Mcxβ̂2‖ = |β̂2|‖Mcx‖ = |(Mcx)′(Mcy)|
‖Mcx‖2 ‖Mcx‖

Cancelling ‖Mcx‖ we get (6.19). This completes the proof.
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Chapter 7

Classical OLS

In this chapter we continue our study of linear least squares and multivariate re-
gression, as begun in chapter 6. To say more about whether linear least squares esti-
mation is a “good” procedure or otherwise, we need to make more assumptions on
the process that generates our data. Not surprisingly, for some sets of assumptions
on the data generating process, the performance of linear least squares estimation
is good, while for other assumptions the performance is poor. The main purpose of
this chapter is to describe the performance of linear least squares estimation under
the classical OLS assumptions, where OLS stands for ordinary least squares.

To some people (like me), the standard OLS assumptions are somewhat difficult to
swallow. At the same time, the results obtained from these assumptions form the
bread and butter of econometrics. As such, they need to be understood.

7.1 The Model

[roadmap]

7.1.1 The OLS Assumptions

In chapter 6 we assumed that the observed input-output pairs (x1, y1), . . . , (xN, yN)

were draws from some common joint distribution on RK+1. To work with the clas-
sical OLS model, we have to impose (much!) more structure. For starters, we will
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assume that the input-output pairs all satisfy

yn = β′xn + un (7.1)

where β is an unknown K× 1 vector of parameters, and u1, . . . , uN are unobservable
random variables. The model is called linear because the deterministic part of the
output value β′x is linear as a function of x. Letting u := (u1, u2, . . . , uN)

′ be the
column vector formed by the N realizations of the shock, the N equations in (7.1)
can be expressed as

y = Xβ + u (7.2)

Here are three very traditional examples:

Example 7.1.1. The Cobb-Douglas production function relates capital and labor in-
puts with output via y = Akγ`δ where A is a random, firm-specific productivity
term and γ and δ are parameters. Taking logs yields the linear regression model

ln y = β + γ ln k + δ ln `+ u

where the random term ln A is represented by β + u.

Example 7.1.2. The elementary Keynesian consumption function is of the form C =

β1 + β2D, where C is consumption and D is household disposable income. Letting
β := (β1, β2) and x := (1, D) and adding an error term u, we obtain the linear
regression model C = β′x + u.

Example 7.1.3. Okun’s law is an empirical rule of thumb relating output to unem-
ployment. A commonly estimated form of Okun’s law is U = β1 + β2G + u, where
G is the growth rate of GDP over a given period, and U is the change in the un-
employment rate over the same period (i.e., end value minus starting value). The
parameter β2 is expected to be negative. The value −β1/β2 is thought of as the rate
of GDP growth necessary to maintain a stable unemployment rate.

Let M be the annihilator associated with X. The proof of the next fact is an exercise
(exercise 7.6.1).

Fact 7.1.1. When (7.2) holds we have My = Mu and SSR = u′Mu.

Regarding the shocks u1, . . . , uN, the classical OLS model makes two assumptions,
one concerning the first moments, and the other concerning the variance. The first
assumption is as follows:
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Assumption 7.1.1. Together, u and X satisfy E [u |X] = 0.

This assumption expresses a number of ideas in very compact form. Important
details are recorded in the next fact, the proof of which is an exercise (exercise 7.6.2).

Fact 7.1.2. Given assumption 7.1.1, we have:

1. E [u] = 0.

2. E [um | xnk] = 0 for any m, n, k.

3. E [umxnk] = 0 for any m, n, k.

4. cov[um, xnk] = 0 for any m, n, k.

To consider the variance of β̂, we will need an assumption on second moments of
the shock. The most standard assumption is as follows:

Assumption 7.1.2. Together, u and X satisfy E [uu′ |X] = σ2I, where σ is a positive
constant.

The value of the parameter σ is unknown, in the same sense that the vector of coef-
ficients β is unknown. To understand assumption 7.1.2, note that

var[u |X] := E [uu′ |X]−E [u |X]E [u′ |X] = E [uu′ |X]

where the second equality is due to assumption 7.1.1. Hence, assumption 7.1.2 im-
plies that the conditional variance-covariance matrix is the constant matrix σ2I.

Fact 7.1.3. Given assumption 7.1.2, we have the following results:

1. var[u] = E [uu′] = σ2I.

2. Shocks are homoskedastic: E [u2
i |X] = E [u2

j |X] = σ2 for any i, j in 1, . . . , N.

3. Distinct shocks are uncorrelated: E [uiuj |X] = 0 whenever i 6= j.
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7.1.2 The OLS Estimators

The standard estimator of the unknown parameter vector β is the estimator β̂ de-
fined in (6.8). To repeat:

β̂ := (X′X)−1X′y (7.3)

The standard estimator of the parameter σ2 introduced in assumption 7.1.2 is

σ̂2 :=
SSR

N − K

We will show below that, under the classical OLS assumptions given in §7.1.1, both
estimators have nice properties. As a precursor to the arguments, note that, apply-
ing (7.2), we obtain

β̂− β := (X′X)−1X′y− β = (X′X)−1X′(Xβ + u)− β = (X′X)−1X′u

This deviation is known as the sampling error of β̂. Adding β to both sides yields
the useful expression

β̂ = β + (X′X)−1X′u (7.4)

7.2 Variance and Bias

In this section we will investigate the properties of the estimators β̂ and σ̂2 under
the standard OLS assumptions.

7.2.1 Bias

Under the linearity assumption y = Xβ + u and the standard assumptions on the
shock, β̂ is an unbiased estimator of β, and σ̂2 is an unbiased estimator of σ2:

Theorem 7.2.1. Under assumption 7.1.1, we have E [β̂] = E [β̂ |X] = β.

Theorem 7.2.2. Under assumptions 7.1.1–7.1.2, we have E [σ̂2] = E [σ̂2 |X] = σ2.

Proof of theorem 7.2.1. By (7.4) and assumption 7.1.1, we have

E [β̂ |X] = β +E [(X′X)−1X′u |X] = β + (X′X)−1X′E [u |X] = β

This proves E [β̂ |X] = β, and hence E [β̂] = E [E [β̂ |X]] = E [β] = β.
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Proof of theorem 7.2.2. For reasons that will become apparent, we start the proof by
showing that trace(M) = N − K. To see that this is so, observe that, recalling
fact 2.3.8,

trace(P) = trace[X(X′X)−1X′] = trace[(X′X)−1X′X] = trace[IK] = K

∴ trace(M) = trace(IN − P) = trace(IN)− trace(P) = N − K

Now let mij(X) be the i, j-th element of M. Applying fact 7.1.1 on page 196, we have

E [SSR |X] = E [u′Mu |X] = E

[
N

∑
i=1

N

∑
j=1

uiujmij(X) |X
]
=

N

∑
i=1

N

∑
j=1

mij(X)E [uiuj |X]

In view of assumption 7.1.2, this reduces to

N

∑
n=1

mnn(X)σ2 = trace(M)σ2 = (N − K)σ2

Hence E [σ̂2 |X] = σ2, and E [σ̂2] = E [E [σ̂2 |X]] = E [σ2] = σ2.

7.2.2 Variance of β̂

Now that β̂ is known to be unbiased, we want to say something about the variance.

Theorem 7.2.3. Under assumptions 7.1.1–7.1.2, we have var[β̂ |X] = σ2(X′X)−1.

Proof. If A := (X′X)−1X′, then β̂ = β + Au, and

var[β̂ |X] = var[β + Au |X] = var[Au |X]

Since A is a function of X, we can treat it as non-random given X, and hence, by
fact 2.4.4 on page 73, we have

var[Au |X] = A var[u |X]A′ = A(σ2I)A′

Moreover,

A(σ2I)A′ = σ2AA′ = σ2(X′X)−1X′X(X′X)−1 = σ2(X′X)−1

∴ var[β̂ |X] = var[Au |X] = σ2(X′X)−1

JOHN STACHURSKI January 10, 2014



7.2. VARIANCE AND BIAS 200

7.2.3 The Gauss-Markov Theorem

Now that β̂ is known to be unbiased for β under the OLS assumptions, the next
step is to show that β̂ has low variance. Although we obtained an expression for the
variance in theorem 7.2.3, it’s not clear whether this is low or high. The natural way
to answer this question is to compare the variance of β̂ with that of other unbiased
estimators. This leads us to the famous Gauss-Markov theorem.

Theorem 7.2.4 (Gauss-Markov). If b is any other linear unbiased estimator of β, then
var[b |X] ≥ var[β̂ |X], in the sense that var[b |X]− var[β̂ |X] is nonnegative definite.

The theorem is often summarized by stating that β̂ is BLUE. BLUE stands for Best
Linear Unbiased Estimator, and was discussed previously in §4.2.2.

There are a couple of points to clarify. First, the meaning of linearity: Although it’s
not immediately clear from the statement of the theorem, here linearity of b means
that b is linear as a function of y (taking X as fixed). In view of theorem 2.1.1 on
page 56, this is equivalent to requiring that b = Cy for some matrix C. The matrix
C is allowed to depend on X (i.e., be a function of X), but not y.

Second, how to interpret the statement that var[b |X] − var[β̂ |X] is positive def-
inite? Matrices have no standard ordering, and hence it’s hard to say when one
random vector has “larger” variance than another. But nonnegative definiteness of
the difference is a natural criterion. In particular, all elements of the principle diago-
nal of a nonnegative definite matrix are themselves nonnegative, so the implication
is that var[bk |X] ≥ var[β̂k |X] for all k.

Third, the meaning of unbiasedness: In this theorem, it means that, regardless of the
value of β (i.e., for any β ∈ RK), we have E [b |X] = E [Cy |X] = β.

Proof of theorem 7.2.4. Let b = Cy, as described above, and let D := C− A, where
A := (X′X)−1X′. Then

b = Cy = Dy + Ay = D(Xβ + u) + β̂ = DXβ + Du + β̂ (7.5)

Taking conditional expectations and using the fact that D is a function of X, we
obtain

E [b |X] = E [DXβ |X] +E [Du |X] +E [β̂ |X]
= DXE [β |X] + DE [u |X] +E [β̂ |X] = DXβ + 0 + β
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In light of the fact that b is unbiased, and, in particular, E [b |X] = β for any given
β, we have

β = DXβ + β for all β ∈ RK

∴ 0 = DXβ for all β ∈ RK

In light of exercise 2.6.19 on page 80, we conclude that DX = 0. Combining this
result with (7.5), we obtain the expression b = Du + β̂. Roughly speaking, this says
that b is equal to the OLS estimator plus some zero mean noise.

To complete the proof, observe that

var[b |X] = var[Du + β̂ |X] = var[(D + A)u |X] = (D + A) var[u |X](D + A)′

Using assumption 7.1.2 and fact 2.3.5, the right-hand side of this expression becomes

σ2(D + A)(D′ + A′) = σ2(DD′ + DA′ + AD′ + AA′)

Since
DA′ = DX(X′X)−1 = 0(X′X)−1 = 0

and since
AA′ = (X′X)−1X′X(X′X)−1 = (X′X)−1

we now conclude that

var[b |X] = σ2[DD′ + (X′X)−1] = σ2DD′ + var[β̂ |X]

Since σ2DD′ is nonnegative definite (why?), the proof is now done.

7.3 The FWL Theorem

The Frisch-Waugh-Lovell (FWL) Theorem yields, among other things, an explicit
expression for an arbitrary sub-vector of the OLS estimator β̂. While that might not
sound terribly exciting, it turns out to have many useful applications.

7.3.1 Statement and Proof

Continuing to work with our linear regression model, let’s take y and X as given,
implying an OLS estimate β̂ = (X′X)−1X′y. Recall that y can be decomposed as

y = Py + My = Xβ̂ + My (7.6)
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We can write (7.6) in a slightly different way by partitioning the regressors and the
estimated coefficients into two classes: Let X1 be a matrix consisting of the first K1

columns of X, and let X2 be a matrix consisting of the remaining K2 := K − K1

columns of X. Similarly, let

1. β̂1 be the K1 × 1 vector consisting of the first K1 elements of β̂, and

2. β̂2 be the K2 × 1 vector consisting of the remaining K2 elements of β̂.

We can then rewrite (7.6) as

y = X1β̂1 + X2β̂2 + My (7.7)

Let P1 := X1(X′1X1)
−1X′1 be the projection onto the column space of X1, and let

M1 := I− P1 be the corresponding annihilator, projecting onto the orthogonal com-
plement of the column space of X1. With this notation we have the following result:

Theorem 7.3.1 (FWL theorem). The K2 × 1 vector β̂2 can be expressed as

β̂2 = (X′2M1X2)
−1X′2M1y (7.8)

The theorem gives an explicit analytical expression for our arbitrarily chosen subset
β̂2 of the OLS estimate β̂. Before discussing it’s implications, let’s present the proof.

Proof of theorem 7.3.1. Premultiplying both sides of (7.7) by X′2M1, we obtain

X′2M1y = X′2M1X1β̂1 + X′2M1X2β̂2 + X′2M1My (7.9)

The first and last terms on the right-hand side are zero. This is clear for the first term,
because M1 is the annihilator associated with X1. Hence M1X1 = 0. Regarding the
last term, it suffices to show that the transpose of the term is 0′. To see this, observe
that

(X′2M1My)′ = y′M′M′1X2 = y′MM1X2 = y′MX2 = 0′

In the first equality we used the usual property of transposes (fact 2.3.5), in the
second we used symmetry of M and M1 (exercise 3.4.10 or direct calculation), in the
third we used fact 3.1.5 on page 90, and in the fourth we used the fact that M is the
annihilator for X, and hence MX2 = 0.

In light of the above, (7.9) becomes

X′2M1y = X′2M1X2β̂2

To go from this equation to (7.8), we just need to check that X′2M1X2 is invertible.
The proof of this last fact is left as an exercise (exercise 7.6.10).
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7.3.2 Intuition

As exercise 7.6.8 asks you to show, the expression for β̂2 in theorem 7.3.1 can be
rewritten as

β̂2 = [(M1X2)
′M1X2]

−1(M1X2)
′M1y (7.10)

Close inspection of this formula confirms the following claim: There is another way
to obtain β̂2 besides just regressing y on X and then extracting the last K2 elements:
We can also regress M1y on M1X2 to produce the same result.

To get some feeling for what this means, let’s look at a special case, where X2 is the
single column colK(X), containing the observations on the K-th regressor. In view
of the preceding discussion, the OLS estimate β̂K can be found by regressing

ỹ := M1y = residuals of regressing y on X1

on
x̃K := M1 colK(X) = residuals of regressing colK(X) on X1

Loosely speaking, these two residual terms ỹ and x̃K can be thought of as the parts
of y and colK(X) that are “not explained by” X1. Thus, on an intuitive level, the
process for obtaining the OLS estimate β̂K is:

1. Remove effects of all other regressors from y and colK(X), producing ỹ and x̃K.

2. Regress ỹ on x̃K.

This is obviously different from the process for obtaining the coefficient of the vector
colK(X) in a simple univariate regression, the latter being just

1. Regress y on colK(X).

In words, the difference between the univariate least squares estimated coefficient
of the K-th regressor and the multiple regression OLS coefficient is that the multiple
regression coefficient β̂K measures the isolated relationship between xK and y, without
taking into account indirect channels involving other variables.

We can illustrate this idea further with a small simulation. Suppose that

y = x1 + x2 + u where u IID∼ N (0, 1)
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If we generate N independent observations from this model and regress y the ob-
servations of (x1, x2), then, provided that N is sufficiently large, the coefficients for
x1 and x2 will both be close to unity.1 However, if we regress y on x1 alone, then the
coefficient for x1 will depend on the relationship between x1 and x2. For example:

> N <- 1000

> beta <- c(1, 1)

> X1 <- runif(N)

> X2 <- 10 * exp(X1) + rnorm(N)

> X <- cbind(X1, X2)

> y <- X %*% beta + rnorm(N)

> results <- lm(y ~ 0 + X1)

> results$coefficients

X1

30.76840

Here the coefficient for x1 is much larger than unity, because an increase in x1 tends
to have a large positive effect on x2, which in turn increases y. The coefficient in the
univariate regression reflects this total effect.

7.3.3 Simple Regression

As an application of the FWL theorem, let’s derive the familiar expression for the
slope coefficient in simple regression. Simple regression is a special case of multi-
variate regression, where the intercept is included (i.e., 1 is the first column of X)
and K = 2. For simplicity, the second column of X will be denoted simply by x. As
we saw in (4.26) on page 141, the OLS estimates are

β̂2 =
∑N

n=1(xn − x̄)(yn − ȳ)

∑N
n=1(xn − x̄)2

and β̂1 = ȳ− β̂2x̄

where x̄ is the sample mean of x and ȳ is the sample mean of y. The coefficient β̂2 is
known as the slope coefficient, while β̂1 is called the intercept coefficient.

We can rewrite β̂2 more succinctly as

β̂2 = [(x− x̄1)′(x− x̄1)]−1(x− x̄1)′(y− ȳ1) (7.11)

1The reason is that, in this setting, the OLS estimator is consistent for the coefficients. A proof can
be found in chapter 7.
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By the FWL theorem (equation 7.10), we also have

β̂2 = [(Mcx)′Mcx]−1(Mcx)′Mcy (7.12)

where Mc is the annihilator associated with the single regressor 1, as defined in
(6.16). It is straightforward to show that for this annihilator Mc and any z, we have
Mcz = z − z̄1. In other words, the annihilator associated with 1 converts vectors
into deviations around their mean. (The “c” in Mc reminds us that Mc centers vec-
tors around their mean.)

It is now easy to see that the right-hand sides of (7.11) and (7.12) coincide.

7.3.4 Centered Observations

Let’s generalize the discussion in the preceding section to the case where there are
multiple non-constant regressors. The only difference to the preceding case is that
instead of one column x of observations on a single non-constant regressor, we have
a matrix X2 containing multiple columns, each a vector of observations on a non-
constant regressor.

If the OLS estimate β̂ = (X′X)−1X′y is partitioned into (β̂1, β̂2), then we can write

Xβ̂ = 1β1 + X2β̂2

Applying the FWL theorem (equation 7.10) once more, we can write β̂2 as

β̂2 = [(McX2)
′McX2]

−1(McX2)
′Mcy

where Mc is the annihilator in (6.16). As we saw in the last section, Mcy is y centered
around its mean. Similarly, McX2 is a matrix formed by taking each column of X2

and centering it around its mean.

What we have shown is this: In an OLS regression with an intercept, the estimated
coefficients of the non-constant (i.e., non-intercept) regressors are equal to the esti-
mated coefficients of a zero-intercept regression performed after all variables have
been centered around their mean.

7.3.5 Precision of the OLS Estimates

Let’s return to the regression problem, with assumptions 7.1.1–7.1.2 in force. In the-
orem 7.2.3, we showed that the variance-covariance matrix of the OLS estimate β̂
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given X is σ2(X′X)−1. The scalar variances of the individual OLS coefficient esti-
mates β̂1, . . . , β̂K are given by the principle diagonal of this matrix. Since any one
of these OLS estimates β̂k is unbiased (theorem 7.2.1), small variance of β̂k corre-
sponds to probability mass concentrated around the true parameter βk. In this case,
we say that the estimator has high precision. (Precision of an estimator is sometimes
defined as the inverse of the variance, although definitions do vary.)

The Gauss-Markov theorem tells us that, at least as far as unbiased linear estimators
go, the OLS estimates will have low variance. Put differently, if we fix the regression
problem and vary the estimators, the OLS estimators will have the most precision.
However, we want to think about precision a different way: If we hold the esti-
mation technique fixed (use only OLS) and consider different regression problems,
which problems will have high precision estimates, and which will have low preci-
sion estimates?

To answer this question, let’s focus on the variance of a fixed coefficient βk. We can
write the regression model y = Xβ + u as

y = X1β1 + colk(X)βk + u (7.13)

where colk(X) is the vector of observations of the k-th regressor, X1 contains as its
columns the observations of the other regressors, and β̂1 is the OLS estimates of the
corresponding coefficients. From the FWL theorem, we can then express β̂k as

β̂k = (colk(X)′M1 colk(X))−1 colk(X)′M1y (7.14)

where M1 is the annihilator corresponding to X1. That is, M1 := I− P1 where P1 is
the matrix X1(X′1X1)

−1X′1 projecting onto the column space of X1. Applying M1 to
both sides of (7.13), we obtain

M1y = M1 colk(X)βk + M1u

Substituting this into (7.14), we obtain a second expression for β̂k in terms of the
shock vector u:

β̂k = βk + (colk(X)′M1 colk(X))−1 colk(X)′M1u (7.15)

Some calculations then show (exercise 7.6.11) that

var[β̂k |X] = σ2(colk(X)′M1 colk(X))−1 = σ2‖M1 colk(X)‖−2 (7.16)

Thus, the variance of β̂k depends on two components, the variance σ2 of the shock
u, and the norm of the vector M1 colk(X).
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The variance in σ2 is in some sense unavoidable: Some data is noisier that other data.
The larger the variance in the unobservable shock, the harder it will be to estimate
βk with good precession. The term ‖M1 colk(X)‖−2 is more interesting. The vector
M1 colk(X) is the residuals from regressing colk(X) on X1, and ‖M1 colk(X)‖ is the
norm of this vector. If this norm is small, then the variance of β̂k will be large.

When will this norm be small (and the variance of β̂k correspondingly large)? This
will be the case when colk(X) is “almost” a linear combination of the other regres-
sors. To see this, suppose that colk(X) is indeed “almost” a linear combination of the
other regressors. This implies that

P1 colk(X) ≈ colk(X)

because P1 projects into the column space of the other regressors X1, so we are
saying that colk(X) is “almost in” that span. Now if P1 colk(X) ≈ colk(X), then
‖P1 colk(X)− colk(X)‖ ≈ 0, and hence

‖M1 colk(X)‖ = ‖ colk(X)− P1 colk(X)‖ ≈ 0

In other words, the norm of M1 colk(X) is small, and hence the variance of β̂k is
large.

This situation is sometimes referred to as multicollinearity. As we have just seen,
multicollinearity is associated with poor precision in estimates of the coefficients.

7.4 Normal Errors

In this section, we’re going to strengthen and augment our previous assumptions by
specifying the parametric class of the error vector u. Once this class is specified, we
can determine the distribution of the OLS estimate β̂ up to the unknown parameters
σ2, β1, . . . , βK. (In other words, if values for these parameters are specified, then the
distribution of β̂ is fully specified.) This will allow us to test hypotheses about the
coefficients.

Because of its many attractive properties, the normal distribution is our go-to dis-
tribution, at least for the case where we have no information that suggests another
distribution, or contradicts the normality assumption. Following this grand tradi-
tion, we will assume that u is a normally distributed element of RN.

A normal distribution in RN is fully specified by its mean and variance-covariance
matrix. In this case, given that we’re strengthening our previous assumptions, we
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have no choice here. From assumption 7.1.1, the mean is E [u] = 0, and, from
assumption 7.1.2, the variance-covariance matrix is E [uu′] = σ2I. We must then
have u ∼ N (0, σ2I).

Furthermore, assumption 7.1.1 implies that shocks and regressors are uncorrelated
(see fact 7.1.2 on page 197). To make life a bit easier for ourselves, we’ll go a step
further and assume they are independent.

Assumption 7.4.1. X and u are independent, and u ∼ N (0, σ2I).

Notice that assumption 7.4.1 implies both assumption 7.1.1 and assumption 7.1.2.

7.4.1 Preliminary Results

Assumption 7.4.1 also implies that the conditional distribution of β̂ given X is nor-
mal, since β̂ = β+(X′X)−1X′u, and linear combinations of normals are normal. The
next theorem records this result.

Theorem 7.4.1. Under assumption 7.4.1, the distribution of β̂ given X isN (β, σ2(X′X)−1).

It follows from theorem 7.4.1 that the distribution of individual coefficient β̂k given
X is also normal. This can be established directly from (7.15), and the variance is
given in (7.16). However, we will use theorem 7.4.1 instead, since it gives an ex-
pression for the variance which is easier to compute. To do this, let ek be the k-th
canonical basis vector, and observe that

e′k β̂ ∼ N (e′kβ, σ2e′k(X
′X)−1ek)

In other words,
β̂k ∼ N (βk, σ2e′k(X

′X)−1ek) (7.17)

Note that e′k(X
′X)−1ek is the (k, k)-th element of the matrix (X′X)−1.2 It then follows

that

zk :=
β̂k − βk

σ
√

e′k(X
′X)−1ek

∼ N (0, 1) (7.18)

Our second preliminary result concerns the distribution of σ̂2, or more precisely, of

Q := (N − K)
σ̂2

σ2 (7.19)

2See exercise 2.6.15 on page 80.
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Theorem 7.4.2. Under assumption 7.4.1, the distribution of Q given X is χ2(N − K).

Proof. To see that Q ∼ χ2(N − K) given X, observe that

Q =
(Mu)′(Mu)

σ2 =
u′Mu

σ2 = (σ−1u)′M(σ−1u)

Since σ−1u ∼ N (0, I), the expression on the far right is χ2(N − K), as follows from
fact 2.4.9 and our previous result that trace(M) = rank(M) = N − K (recall that for
idempotent matrices, trace and rank are equal—see fact 2.3.9).

7.4.2 The t-test

Let’s consider the problem of testing a hypothesis about an individual coefficient
βk. Specifically, we consider the null hypothesis

H0 : βk = β0
k against H1 : βk 6= β0

k

where β0
k is any number. If we knew σ2, we could test H0 via (7.18). Since we don’t,

the standard methodology is to replace σ2 with its estimator σ̂2, and determine the
distribution of the resulting test statistic. Our next result implements this idea. In
doing so, we will make use of the following notation:

se(β̂k) :=
√

σ̂2e′k(X
′X)−1ek

The term se(β̂k) is called the standard error of β̂k. It can be regarded as the sample
estimate of the standard deviation of β̂k. Replacing this standard deviation with its
sample estimate se(β̂k) and βk with β0

k in (7.18), we obtain the t-statistic

tk :=
β̂k − β0

k

se(β̂k)
(7.20)

The distribution of this statistic under the null is described in the next theorem.

Theorem 7.4.3. Let assumption 7.4.1 hold. If the null hypothesis H0 is true, then, condi-
tional on X, the distribution of the t-statistic in (7.20) is Student’s t with N − K degrees of
freedom.
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Proof. Suppose that the null hypothesis is true. We then have

tk =
β̂k − βk

se(β̂k)
=

β̂k − βk√
σ2e′k(X

′X)−1ek

√
1

σ̂2/σ2 = zk

√
1

σ̂2/σ2

where zk is defined in (7.18). Multiplying and dividing by the square root of N − K,
we can write this as

tk = zk

√
N − K

(N − K)σ̂2/σ2 = zk

√
N − K

Q

where Q is defined in (7.19). In view of fact 1.3.6 on page 27, we know that tk is
Student’s t with N − K degrees of freedom if zk is standard normal, Q is χ2(N − K)
and zk and Q are independent. The first two results were established in §7.4.1, so it
remains only to show that zk and Q are independent.

To see this, note that if a and b are independent random vectors and f and g are
two functions, then f (a) and g(b) are likewise independent. Since we can write
zk as a function of β̂ and Q as a function of û, it suffices to show that β̂ and û are
independent. Since both are normally distributed given X, fact 2.4.7 on page 74
implies that they will be independent whenever their covariance is zero. This is
exercise 7.6.5, which completes the proof of theorem 7.4.3.

Recall that a test is a test statistic T and a critical value c, with the rule: Reject H0 if
T > c. For T we take T = |tk|. Let a desired size α be given. In view of (5.15) on
page 165, we choose c = cα to solve α = Pθ{T > c}, or

1− α = Pθ{|tk| ≤ c}

From (1.14) on page 21, we know that the solution is cα = F−1(1− α/2), where F
is the Student’s t cdf with N − K degrees of freedom. In view of example 5.3.3, the
corresponding p-value is 2F(−|tk|).

Let’s look at an example. The most common implementation of the t-test is the test
that a given coefficent is equal to zero. For the k-th coefficient βk, this leads to the
statistic

tk :=
β̂k

se(β̂k)

This statistic is sometimes called the Z-score. To illustrate further, an application
with simulated data is given in listing 9. If you run the program, you will find that

JOHN STACHURSKI January 10, 2014



7.4. NORMAL ERRORS 211

the Z-scores calculated by the zscore function agree with the “t value” column of
the summary table produced by R’s summary function (the last line of listing 9). It is
left as an exercise to check that the p-values in the same table agree with the formula
2F(−|tk|) given in the last paragraph.

Listing 9 Calculating Z-scores

set.seed (1234)

N <- 50; K <- 3

beta <- rep(1, K)

X <- cbind(runif(N), runif(N), runif(N))

u <- rnorm(N)

y <- X %*% beta + u

betahat <- solve(t(X) %*% X) %*% t(X) %*% y

residuals <- y - X %*% betahat

sigmahat <- sqrt(sum(residuals ^2) / (N - K))

# Compute t-stat (Z-score) for k-th regressor

zscore <- function(k) {

se <- sigmahat * sqrt(solve(t(X) %*% X)[k, k])

return(betahat[k] / se)

}

# Print t-stats

for (k in 1:3) {

cat("t-stat , k =", k, ":", zscore(k), "\n")

}

# For comparison:

print(summary(lm(y ~ X - 1)))

7.4.3 The F-test

The t-test is used to test hypotheses about individual regressors. For hypotheses
concerning multiple regressors, the most common test is the F-test. The F-test can
test quite general hypotheses, but for simplicity we will focus on null hypotheses
that restrict a subset of the coefficients to be zero.
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In what follows, we let X1, X2, β̂1, β̂2, P1 and M1 be as defined in §7.3.1. As our null
hypothesis we take

H0 : β2 = 0 against H1 : β2 6= 0

Since
y = Xβ + u = X1β1 + X2β2 + u (7.21)

it follows that under the null hypothesis we have

y = X1β1 + u (7.22)

Letting
USSR := ‖My‖2 and RSSR := ‖M1y‖2

be the sums of squared residuals for the unrestricted regression (7.21) and restricted
regression (7.22) respectively, the standard test statistic for our null hypothesis is

F :=
(RSSR− USSR)/K2

USSR/(N − K)
(7.23)

Large residuals in the restricted regression (7.22) relative to those in (7.21) result in
large values for F, which translates to evidence against the null hypothesis.

Theorem 7.4.4. Let assumption 7.4.1 hold. If the null hypothesis is true, then, conditional
on X, the statistic F defined in (7.23) has the F distribution, with parameters (K2, N − K).

Proof. Let Q1 := (RSSR− USSR)/σ2 and let Q2 := USSR/σ2, so that

F =
Q1/K2

Q2/(N − K)

In view of fact 1.3.7 on page 28, it now suffices to show that, under the null hypoth-
esis,

(a) Q1 is chi-squared with K2 degrees of freedom.

(b) Q2 is chi-squared with N − K degrees of freedom.

(c) Q1 and Q2 are independent.

Part (b) was established in theorem 7.4.2. Regarding part (a), observe that, under
the null hypothesis,

• USSR = ‖My‖2 = ‖M(X1β1 + u)‖2 = ‖Mu‖2 = u′Mu, and
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• RSSR = ‖M1y‖2 = ‖M1(X1β1 + u)‖2 = ‖M1u‖2 = u′M1u

It follows that

RSSR− USSR = u′M1u− u′Mu = u′(M1 −M)u

Using the definitions of M and M1, we then obtain

Q1 =
RSSR− USSR

σ2 =
u′(I− P1 − I + P)u

σ2 = (σ1u)′(P− P1)(σ
−1u)

It is an exercise to show that (P− P1) is symmetric and idempotent.3 Applying the
techniques in the proof of theorem 7.2.2, we see that

rank(P− P1) = trace(P− P1) = trace(P)− trace(P1) = K− K1 = K2

Via fact 2.4.9, we conclude that Q1 ∼ χ2(K2), as was to be shown.

To complete the proof, it remains to show that, under the null hypothesis and taking
X as given, Q1 and Q2 are independent. To see this, observe that Q1 is a function of
(P− P1)u, while Q2 is a function of Mu. Since both (P− P1)u and Mu are normal
given X, it suffices to show that their covariance is zero. This is the case, because

cov[(P− P1)u, Mu |X] = E [(P− P1)u(Mu)′ |X] = E [(P− P1)uu′M |X]

Since P, P1 and M are just functions of X, this becomes

(P− P1)E [uu′ |X]M = σ2(P− P1)M = σ2(P− P1)(I− P)

Using idempotence and fact 3.1.2, the matrix product on the right is

(P− P1)(I− P) = P− P2 − P1 + P1P = P− P− P1 + P1 = 0

This completes the proof of independence, and hence of theorem 7.4.4.

The most common implementation of the F test is the test that all coefficients of
non-constant regressors are zero. In this case (7.21) becomes

y = 1β1 + X2β2 + u (7.24)

where β2 is the vector of coefficients corresponding to the non-constant regressors.
Since X1 = 1, we then have M1 = Mc, where the latter is defined in (6.16) on
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Listing 10 Calculating the F statistic

set.seed (1234)

N <- 50; K <- 3

beta <- rep(1, K)

x2 <- runif(N); x3 <- runif(N)

X <- cbind(rep(1, N), x2, x3)

u <- rnorm(N)

y <- X %*% beta + u

betahat <- solve(t(X) %*% X) %*% t(X) %*% y

residuals <- y - X %*% betahat

ussr <- sum(residuals ^2)

rssr <- sum((y - mean(y))^2)

Fa <- (rssr - ussr) / 2

Fb <- ussr / (N - K)

cat("F =", Fa / Fb, "\n")

# For comparison:

print(summary(lm(y ~ x2 + x3)))
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page 187, and hence RSSR is the squared norm of y− ȳ1. An application with sim-
ulated data is given in listing 10. If you run the program, you will find that the F
statistic calculated by the theoretical formula agrees with the F statistic produced by
R’s summary function.

It is an exercise to show that in the case of (7.24), the F statistic in (7.23) can be
rewritten as

F =
R2

c
1− R2

c

N − K
K2

(7.25)

where R2
c is the centered R squared defined in §6.3.2. Can you provide some intu-

ition as to why large F is evidence against the null?

7.5 When the Assumptions Fail

The standard OLS assumptions are very strict, and the results we have obtained are
sensitive to their failure. For example, if our basic assumption y = Xβ + u is not
true, then pretty much all the results discussed in this chapter are invalid. In what
follows, let’s be polite and consider situations where the standard OLS assumptions
are only slightly wrong.

7.5.1 Endogeneity Bias

Even if the model is correctly specified, the OLS estimates can be biased when as-
sumption 7.1.1 (i.e., E [u |X] = 0) fails. Assumption 7.1.1 is sometimes called an
exogeneity assumption. When it fails, the bias is called endogeneity bias. There are
many sources of endogeneity bias. We will look at two examples.

As a first example, consider again the Cobb-Douglas example on page 196, which
yields the regression model

ln yn = β + γ ln kn + δ ln `n + un

Here y is output, k is capital, ` is labor, and subscript n indicates observation on the
n-th firm. The term un is a firm specific productivity shock. A likely problem here is
that the productivity shocks are positively correlated, and, moreover, the firm will

3Hint: See fact 3.1.2 on page 88.
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choose higher levels of both capital and labor when it anticipates high productivity
in the current period. This will lead to endogeneity bias.

To illustrate this, suppose that un,−1 is the productivity shock received by firm n last
period, and this value is observable to the firm. Suppose that productivity follows a
random walk, with un = un,−1 + ηn, where ηn is zero mean white noise. As a result,
the firm forecasts period n productivity as E [un | un,−1] = un,−1. Finally, suppose
that the firm increases labor input when productivity is anticipated to be high, with
the specific relationship `n = a + bE [un | un,−1] for b > 0. When all shocks are zero
mean we then have

E [`nun] = E [(a + bun,−1)(un,−1 + ηn)] = E [bu2
n,−1]

This term will be strictly positive whenever un,−1 has positive variance. Thus, the
conditions of fact 7.1.2 (page 197) fail, and therefore assumption 7.1.1 does not hold
(because assumption 7.1.1 implies fact 7.1.2).

This source of endogeneity bias in estimating production functions has been dis-
cussed many times in the literature. The best solution is better modeling. For an
illustration of careful modeling (and discussion of other potential problems with
estimating production functions) see the paper of Olley and Pakes (1996).

As a second example of endogeneity bias, suppose next that we have in hand data
that is generated according to the simple AR(1) model

y0 = 0 and yn = βyn−1 + un for n = 1, . . . , N (7.26)

Here we assume that {un}N
n=1

IID∼ N (0, σ2). The unknown parameters are β and σ2.
Letting

y := (y1, . . . , yN), x := (y0, . . . , yN−1) and u := (u1, . . . , uN)

we can write the N equations in (7.26) as

y = βx + u

Suppose that we now estimate β by regressing y on x, obtaining the OLS estimate

β̂ := (x′x)−1x′y =
x′y
x′x

It turns out that β̂ is a biased estimate of β. The source of the bias is failure of
the exogeneity assumption. For example, fact 7.1.2 tells us that if assumption 7.1.1
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holds, then we must haveE [umxn+1] = 0 for any m and n. In the current set-up, this
equates to E [umyn] = 0. We now show that this fails whenever β 6= 0 and n ≥ m.
To see this, observe that (exercise 7.6.15) we can write yn as

yn =
n−1

∑
j=0

βjun−j (7.27)

and, therefore,

E [ynum] =
n−1

∑
j=0

βjE [un−jum] = βn−mσ2 whenever n ≥ m (7.28)

It follows that when β 6= 0, assumption 7.1.1 must fail.

To help illustrate the bias in our estimate of β, let’s generate the data 10,000 times,
compute β̂ on each occasion, and then take the sample mean. The code to do this is
given in Listing 11, with N = 20 and β = 0.9. The resulting sample mean was 0.82.
Since the number of replications is very large (i.e., 10,000), this will be very close
to E [β̂]. In fact, the asymptotic 95% confidence interval for our estimate of E [β̂] is
(0.818, 0.824).

This bias towards small values is reinforced by the histogram of the observations
given in figure 7.1, which is skewed to the left.

7.5.2 Misspecification and Bias

The linearity assumption y = Xβ + u can fail in many ways, and when it does the
estimator β̂ will typically be biased. Let’s look at one possible failure, where the
model is still linear, but some variables are omitted. In particular, let’s suppose that
the data generating process is in fact

y = Xβ + Zθ+ u (7.29)

We’ll also assume that θ 6= 0, and that E [u |X, Z] = 0.

Suppose that we are aware of the relationship between y and X, but unaware of
the relationship between y and Z. This will lead us to mistakenly ignore Z, and
simply regress y on X. Our OLS estimator will then be given by the usual expression
β̂ = (X′X)−1X′y. Substituting in (7.29), we get

β̂ = (X′X)−1X′(Xβ + Zθ+ u) = β + (X′X)−1X′Zθ+ (X′X)−1X′u
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Listing 11 Generates observations of β̂

N <- 20

y <- numeric(N)

y_zero <- 0

beta <- 0.9

num.reps <- 10000

betahat.obs <- numeric(num.reps)

for (j in 1:num.reps) {

u <- rnorm(N)

y[1] <- beta * y_zero + u[1]

for (t in 1:(N-1)) {

y[t+1] <- beta * y[t] + u[t+1]

}

x <- c(y_zero , y[-N]) # Lagged y

betahat.obs[j] <- sum(x * y) / sum(x^2)

}

print(mean(betahat.obs))
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Figure 7.1: Observations of β̂

We now have
E [β̂] = E [E [β̂ |X, Z]] = β +E [(X′X)−1X′Z]θ

If the columns of X and Z are orthogonal, then X′Z = 0, the last term on the right-
hand side drops out, and β̂ is unbiased. If this is not the case (typically it won’t be),
then β̂ is a biased estimator of β.

7.5.3 Heteroskedasticity

[to be written]

7.6 Exercises

Throughout these exercises, we maintain assumptions 7.1.1 and 7.1.2. In particular,
we assume that y = Xβ + u, E [u |X] = 0, and E [uu′ |X] = σ2I, where σ is a
positive constant.
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A general hint for the exercises is to remember that, as stated in fact 3.3.7, when
computing expectations conditional on X, you can treat X or any function of X as
constant. For example, matrices and vectors that depend only on X and non-random
vectors/matrices, such as Xβ or P = X(X′X)−1X′, can be regarded as constant.

Ex. 7.6.1. Show that My = Mu and SSR = u′Mu.

Ex. 7.6.2. Prove the claims in fact 7.1.2.

Ex. 7.6.3. Confirm part 1 of fact 7.1.3: Show that var[u] = E [uu′] = σ2I.

Ex. 7.6.4. Show that cov[Py, My |X] = 0.

Ex. 7.6.5. Show that, under assumptions 7.1.1–7.1.2, we have cov[β̂, û |X] = 0.

Ex. 7.6.6. Show that E [Py |X] = Xβ and var[Py |X] = σ2P.

Ex. 7.6.7. Show that E [My |X] = 0 and var[My |X] = σ2M.

Ex. 7.6.8. Show that the two expressions for β̂2 in (7.8) and (7.10) are equal.4

Ex. 7.6.9. In the proof of theorem 7.2.2 we used a clever trick with the trace to show
that trace(P) = K. An alternative way to obtain the same result is to observe that,
since P is idempotent, the trace is equal to the rank (fact 2.3.9 on page 70). Prove
directly that the rank of P equals K.

Ex. 7.6.10. (Hard) At the end of the proof of theorem 7.3.1, it was claimed that the
matrix X′2M1X2 is invertible. Verify this claim.

Ex. 7.6.11. Confirm (7.16) on page 206.

Ex. 7.6.12. Using (7.16), show that for the simple OLS model y = β11 + β2x + u, the
variance of β̂2 given x is σ2/ ∑N

n=1(xn − x̄)2.

Ex. 7.6.13. Show that in the case of (7.24), the F statistic in (7.23) can be rewritten as
(7.25).5

Ex. 7.6.14. Suppose that assumption 7.4.1 holds, so that X and u are independent,
and u ∼ N (0, σ2I). Show that, conditional on X,

1. Py and My are normally distributed, and

2. Py and My are independent.

Ex. 7.6.15. Verify the expression for yn in (7.27).

4Hint: Use the symmetry and idempotence of the matrix M1.
5Hint: Note that My = MMcy by fact 3.1.5 on page 90.
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7.6.1 Solutions to Selected Exercises

Solution to Exercise 7.6.1. We have

My = M(Xβ + u) = Mu

∴ SSR := ‖My‖2 = ‖Mu‖2 = (Mu)′(Mu) = u′M′Mu = u′MMu

by symmetry of M. The result now follows from idempotence of M.

Solution to Exercise 7.6.2. The respective proofs for claims 1–4 are as follows:

1. E [u] = E [E [u |X]] = E [0] = 0

2. E [um | xnk] = E [E [um |X] | xnk] = E [0 | xnk] = 0

3. E [umxnk] = E [E [umxnk | xnk]] = E [xnkE [um | xnk]] = 0

4. cov[um, xnk] = E [umxnk]−E [um]E [xnk] = 0

Solution to Exercise 7.6.3. By definition,

var[u] = E [uu′]−E [u]E [u′]

Since E [u] = E [E [u |X]] = 0, this reduces to var[u] = E [uu′]. Moreover,

E [uu′] = E [E [uu′ |X]] = E [σ2I] = σ2I

Solution to Exercise 7.6.4. Note that

• My = M(Xβ + u) = Mu

• Py = P(Xβ + u) = Xβ + Pu

• E [My |X] = E [Mu |X] = ME [u |X] = 0
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Using these facts, we obtain

cov[Py, My |X] = cov[Xβ + Pu, Mu |X] = E [(Xβ + Pu)(Mu)′ |X]

From linearity of expectations and symmetry of M, this becomes

cov[Py, My |X] = E [Xβu′M |X] +E [Puu′M |X]

Regarding the first term on the right-hand side, we have

E [Xβu′M |X] = XβE [u′ |X]M = 0

Regarding the second term on the right-hand side, we have

E [Puu′M |X] = PE [uu′ |X]M = Pσ2IM = σ2PM = 0

∴ cov[Py, My |X] = 0

Solution to Exercise 7.6.5. Since M is a function of X, we haveE [Mu |X] = ME [u |X] =
0. As a result,

cov[β̂, û |X] = E [β̂ û′ |X]−E [β̂ |X]E [û |X]′

= E [β̂ (Mu)′ |X]
= E [β(Mu)′ + (X′X)−1X′u (Mu)′ |X]
= E [(X′X)−1X′u (Mu)′ |X]
= E [(X′X)−1X′uu′M |X]
= σ2(X′X)−1X′M

Since X′M = (MX)′ = 0′ we have cov[β̂, û |X] = 0, and the proof is done.

Solution to Exercise 7.6.6. Regarding the claim that E [Py |X] = Xβ, our previous
results and linearity of expectations gives

E [Py |X] = E [Xβ + Pu |X] = Xβ + PE [u |X] = Xβ

Regarding the claim that var[Py |X] = σ2P, our rules for manipulating variances
yield

var[Py |X] = var[Xβ + Pu |X] = var[Pu |X] = P var[u |X]P′ = Pσ2IP′

Using symmetry and idempotence of P, we obtain var[Py |X] = σ2P.
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Solution to Exercise 7.6.7. Similar to the solution of exercise 7.6.6.

Solution to Exercise 7.6.9. Since rank(X) = dim(rng(X)) = K, to establish that
rank(P) = dim(rng(P)) = K, it suffices to show that rng(X) = rng(P). To see
this, suppose first that z ∈ rng(X). Since P is the projection onto rng(X), we then
have z = Pz (see theorem 3.1.3 on page 86), and hence z ∈ rng(P). Conversely, if
z ∈ rng(P), then, z = Pa for some a ∈ RN. By definition, P maps every point into
rng(X), so we conclude that z ∈ rng(X).

Solution to Exercise 7.6.10. To see that the matrix X′2M1X2 is invertible, note that,
in view of idempotence and symmetry of M1,

X′2M1X2 = X′2M1M1X2 = X′2M′1M1X2 = (M1X2)
′M1X2

In view of fact 2.3.11, to show that this matrix is invertible, it suffices to show that
the matrix is positive definite. So take any a 6= 0. We need to show that

a′(M1X2)
′M1X2a = (M1X2a)′M1X2a = ‖M1X2a‖2 > 0

Since the only vector with zero norm is the zero vector, it now suffices to show that
M1X2a is non-zero. From fact 3.1.6 on page 90, we see that M1X2a = 0 only when
X2a is in the column span of X1. Thus, the proof will be complete if we can show
that X2a is not in the column span of X1.

Indeed, X2a is not in the column span of X1. For if it were, then we could write
X1b = X2a for some b ∈ RK1 . Rearranging, we get Xc = 0 for some non-zero c
(recall a 6= 0). This contradicts linear independence of the columns of X.

Solution to Exercise 7.6.11. Repeating (7.15) we have

β̂k = βk + (colk(X)′M1 colk(X))−1 colk(X)′M1u (7.30)

Since βk is constant, taking the variance of (7.30) conditional on X we obtain

var[β̂k |X] = var[Au |X] where A := (colk(X)′M1 colk(X))−1 colk(X)′M1

Since A is a function of X, we can treat it as constant given X, and we obtain

var[β̂k |X] = A var[u |X]A′ = Aσ2IA′ = σ2AA′
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To complete the proof, we just observe that

AA′ = (colk(X)′M1 colk(X))−1 colk(X)′M1M′1 colk(X)(colk(X)′M1 colk(X))−1

= (colk(X)′M1 colk(X))−1

where the last equality is due to symmetry and idempotence of M1 (recall that M1

is an annihilator). We conclude that (7.16) is valid.

Solution to Exercise 7.6.12. For the model y = β11 + β2x + u, the matrix M1 is the
centering annihilator Mc associated with 1, and colk(X) is just x. Hence, from (7.16),
we have

var[β̂2 |X] = σ2(x′Mcx)−1

Using symmetry and idempotence of Mc, this becomes

var[β̂2 |X] = σ2[(Mcx)′Mcx]−1 = σ2/
N

∑
n=1

(xn − x̄)2

Finally, since the only random variables in X are the random variables in x, we can
write

var[β̂2 | x] = σ2/
N

∑
n=1

(xn − x̄)2

as was to be shown.

Solution to Exercise 7.6.13. We need to show that in the special case (7.24) we have

(RSSR− USSR)/K2

USSR/(N − K)
=

R2
c

1− R2
c

N − K
K2

or, equivalently,
RSSR− USSR

USSR
=

R2
c

1− R2
c

(7.31)

Consider first the left-hand side of (7.31). In the case of (7.24), this becomes

RSSR− USSR

USSR
=
‖Mcy‖2 − ‖My‖2

‖My‖2

On the other hand, regarding the right-hand side of (7.31), the definition of R2
c and

some minor manipulation gives

R2
c

1− R2
c
=

‖PMcy‖2

‖Mcy‖2 − ‖PMcy‖2
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Hence, to establish (7.31), we need to show that

‖Mcy‖2 − ‖My‖2

‖My‖2 =
‖PMcy‖2

‖Mcy‖2 − ‖PMcy‖2

This is can be established using (6.18).

Solution to Exercise 7.6.14. We have shown previously that My = Mu and Py =

Xβ + Pu. Since we are conditioning on X we can treat it as constant. When X is
constant, P, M and Xβ are all constant. Since linear (or affine) transformations of
normal random vectors are normal, Mu and Xβ+ Pu are both normally distributed.

It remains to show that Py and My are independent given X. Since they are normally
distributed given X, we need only show that they are uncorrelated given X. This was
already proved in exercise 7.6.4.
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Chapter 8

Time Series Models

The purpose of this chapter is to move away from the IID restriction and towards
the study of data that has some dependence structure over time. Such data is very
common in economics and finance. Our first step is to introduce and study common
time series models. Next, we use the techniques developed in this process to move
from finite sample OLS to large sample OLS. Large sample OLS theory is in many
ways more attractive and convincing than its finite sample counterpart.

8.1 Some Common Models

In this section we introduce some of the most common time series models, working
from specific to more general.

8.1.1 Linear Models

In time series as in other fields, the easiest models to analyze are the linear models.
Of the linear time series models, the friendliest is the scalar Gaussian AR(1) model,
which takes the form

xt+1 = α + ρxt + wt+1 with {wt}
IID∼ N (0, σ2) and x0 given (8.1)

Here α, ρ and σ are parameters. The random variable xt is called the state variable.
Note that (8.1) fully defines the time t state xt as a random variable for each t. (We’ll
spell out how this works in some detail below.) Since xt is a well-defined random
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variable, it has a distribution Πt defined by Πt(s) := P{xt ≤ s}. This distribution
is often called the marginal distribution of xt. In what follows, we will be inter-
ested in the dynamics both of the state process {xt} and also of the corresponding
distribution sequence {Πt}.

The scalar Gaussian AR(1) model (8.1) generalizes in serveral different directions.
For example, we can remove the assumption that the shocks are normally distributed,
in which case it is simply called the scalar AR(1) model. The scalar AR(1) model fur-
ther generalizes to RK, yielding the vector AR(1) model, or VAR(1). The dynamics
of the process are given by

xt+1 = a + Λxt + wt+1 with {wt}
IID∼ φ and x0 given (8.2)

where a is a K × 1 column vector, Λ is a K × K matrix and φ is some distribution
on RK. If φ = N (0, Σ) for some a symmetric, positive definite K× K matrix Σ, then
(8.2) is called the Gaussian VAR(1). The vector xt is called the state vector, and the
space RK in which it takes values is called the state space.

Another common generalization of the scalar AR(1) model is the scalar AR(p) model,
where the next state xt+1 is a (linear) function not just of the current state xt, but of
the last p previous states. For example, the AR(2) process has dynamics

xt+1 = α + ρxt + γxt−1 + wt+1

Although xt+1 is a function of two lagged states, xt and xt−1, we can reformulate it as
a first order model. To begin, we define an additional state variable yt via yt = xt−1.
The dynamics can then be expressed as

xt+1 = α + ρxt + γyt + wt+1

yt+1 = xt

We can write this in matrix form as(
xt+1

yt+1

)
= α

(
1
0

)
+

(
ρ γ

1 0

)(
xt

yt

)
+

(
1
0

)
wt+1

Notice that this is a special case of the VAR(1) model in (8.2). The message is that
higher order processes can be reduced to first order processes by increasing the
number of state variables. For this reason, in what follows we concentrate primarily
on first order models.
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8.1.2 Nonlinear Models

The previous examples are all linear models. Linear models are simple, but this
is not always a good thing. Their simplicity means they cannot always capture
the kinds of dynamics we observe in data. Moreover, many theoretical modeling
exercises produce models that are not linear. In this section we introduce several
popular nonlinear models.

One well-known nonlinear model is the p-th order autoregressive conditional het-
eroskedasticity model (ARCH(p) model), the ARCH(1) version of which has dy-
namics

xt+1 = (α0 + α1x2
t )

1/2wt+1, {wt}
IID∼ N (0, 1) (8.3)

The model arose as an effort to model evolution of returns on a given asset. In the
model, returns xt are first written as the product of an IID shock wt and a time-
varying volatility component σt. That is, xt = σtwt. The evolution of σt is specified
by σ2

t+1 = α0 + α1x2
t . Combining these equations gives the dynamics for xt displayed

in (8.3).

In recent years, econometricians studying asset prices have moved away from the
ARCH model in favor of a generalized ARCH (GARCH) model, the simplest of
which is the GARCH(1,1) process

xt = σtwt

σ2
t+1 = α0 + α1x2

t + α2σ2
t

Another popular nonlinear model is the smooth transition threshold autoregression
(STAR) model

xt+1 = g(xt) + wt+1 (8.4)

where g is of the form

g(s) := (α0 + ρ0s)(1− τ(s)) + (α1 + ρ1s)τ(s)

Here τ : R → [0, 1] is an increasing function satisfying lims→−∞ τ(s) = 0 and
lims→∞ τ(s) = 1. When s is small we have τ(s) ≈ 0, and g(s) ≈ α0 + ρ0s. When s is
large we have τ(s) ≈ 1, and g(s) ≈ α1 + ρ1s. Thus, the dynamics transition between
two different linear models, with the smoothness of the transition depending on the
shape of τ.
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8.1.3 Markov Models

All of the previous examples in this section are special cases of a general class of
process called Markov processes. The general formulation for a (first order, time
homogeneous) Markov process looks as follows:

xt+1 = G(xt, wt+1) with x0 ∼ Π0 (8.5)

Here we assume that {wt}t≥1 is an IID sequence ofRM-valued shocks with common
density φ, and that G is a given function mapping the current state xt ∈ RK and
shock wt+1 ∈ RM into the new state xt+1 ∈ RK. The initial condition x0 and the
shocks {wt}t≥1 are also assumed to be independent of each other. The density Π0 is
the distribution of x0. As before, we’ll let

Πt(s) := P{xt ≤ s}

represent the marginal distribution of the state xt. Where necessary, πt will represent
the corresponding density.

By repeated use of (8.5), we obtain the sequence of expressions

x1 = G(x0, w1)

x2 = G(G(x0, w1), w2)

x3 = G(G(G(x0, w1), w2), w3)

...

Continuing in this fashion, we see that, for any t, the state vector xt can be written
as a function of x0 and the shocks w1, . . . , wt. In other words, for each t, there exists
a function Ht such that

xt = Ht(x0, w1, w2, . . . , wt) (8.6)

Although there may be no neat expression for the function Ht, equation (8.6) clarifies
the fact that (8.5) pins down each xt as a well-defined random variable, depending
on the initial condition and the shocks up until date t.

Example 8.1.1. A simple example is the scalar linear AR(1) process

xt+1 = α + ρxt + wt+1

In this case, there is a neat expression for Ht in (8.6). Indeed, for all t ≥ 0 we have

xt = α
t−1

∑
k=0

ρk +
t−1

∑
k=0

ρkwt−k + ρtx0 (8.7)

The proof is an exercise.
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Fact 8.1.1. For the Markov process (8.5), the current state xt and future shocks wt+j
are independent for every t and every j > 0.

Fact 8.1.1 follows from fact 2.4.1 on page 72. In particular, xt is a function of the
random variables x0, w1, w2, . . . , wt, and these are all, by the IID assumption, inde-
pendent of wt+j.

It’s worth mentioning that, although it’s often not made explicit, behind the all ran-
dom vectors {xt} lies a single sample space Ω and a probability P. The idea is that
an element ω of Ω is selected by “nature” at the start of the “experiment” (with the
probability that ω lies in E ⊂ Ω equal toP(E)). This determines the initial condition
x0 and the shocks wt as

x0(ω), w1(ω), w2(ω), w3(ω), . . .

From these, each state vector xt is determined via

xt(ω) = Ht(x0(ω), w1(ω), w2(ω), . . . , wt(ω))

where Ht is the function in (8.6).

An important object in Markov process theory is the transition density, or stochastic
kernel, which is the conditional density of the next period state given the current
state, and will be denoted by p.1 In particular,

p(· | s) := the conditional density of xt+1 given xt equals s (8.8)

We can usually derive an expression for the transition density in terms of the model.
For example, suppose that the shock is additive, so that

xt+1 = G(xt, wt+1) = g(xt) + wt+1 with {wt}
IID∼ φ (8.9)

for some function g and density φ. In this case, the transition density has the form

p(s′ | s) = φ(s′ − g(s)) (8.10)

How does one arrive at expression (8.10)? Let’s go through the argument for the
scalar case, where the model is xt+1 = g(xt) + wt+1 with wt+1 ∼ φ. Let Φ be the

1I’m being a little careless here, because this density may not in fact exist. (For example, take
the process xt+1 = G(xt, wt+1) where G(s, w) = 0 for all s and w. In this case the random variable
xt+1 is equal to zero with probability one. Such a random variable does not have a density. See
the discussion in §1.2.2.) However, the density will exist in most applications, and in all cases we
consider.
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cdf corresponding to φ, so that the derivative of Φ is φ. Now, we claim that the
density of xt+1 when xt equals constant s is given by p(s′ | s) := φ(s′ − g(s)). This
is equivalent to the claim that the density of x′ = g(s) + w is equal to φ(s′ − g(s)).
Letting F be the cdf of x′ = g(s) + w, we have

F(s′) := P{x′ ≤ s′} = P{g(s) + w ≤ s′} = P{w ≤ s′ − g(s)} = Φ(s′ − g(s))

The density we seek is the derivative of this expression with respect to s′, which is
φ(s′ − g(s)). In other words, p(s′ | s) = φ(s′ − g(s)) as claimed.

8.1.4 Martingales

Loosely speaking, a martingale is a stochastic process evolving over time such that
the best guess of the next value given the current value is the current value. Mar-
tingales arise naturally in many kinds of economic and financial models. Moreover,
since the mid 20th Century, martingales have contributed to much progress in the
foundations of probability theory.

To give a more formal definition, we need first to introduce the notion of a filtration,
which is an increasing sequence of information sets. Recall from §3.3.2 that an in-
formation set is just a set of random variables or vectors. Let {Ft} be a sequence of
information sets. That is, Ft is an information set for each t. The sequence {Ft} is
called a filtration if, in addition, it satisfies Ft ⊂ Ft+1 for all t. Intuitively, Ft con-
tains the information available at time t, and the requirement that the sequence be
increasing reflects the idea that more and more information is revealed over time.2

Example 8.1.2. Let {xt} be a sequence of random vectors, and let

F0 := ∅, F1 := {x1}, F2 := {x1, x2}, F3 := {x1, x2, x3}, · · ·

Then {Ft} is a filtration. In fact this is the canonical example of a filtration.

Now let {mt} be a scalar stochastic process (i.e., a sequence of random variables)
and let {Ft} be a filtration. We say that {mt} is adapted to the filtration {Ft} if
mt is Ft-measurable for every t. (For the definition of measurability see §3.3.2.) In
many applications, Ft represents the variables we know as of time t, and if {mt} is
adapted to Ft, then we can compute mt at time t as well.

2If you learn measure theory, you will learn that {Ft} is actually best thought of as an increasing
sequence of σ-algebras. A presentation along these lines is beyond the scope of these notes. However,
the underlying meaning is almost identical.
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Example 8.1.3. If {Ft} is the filtration defined by

F0 := ∅, F1 := {x1}, F2 := {x1, x2}, F3 := {x1, x2, x3}, · · ·

and mt := t−1 ∑t
j=1 xj, then {mt} is adapted to {Ft}.

Fact 8.1.2. If {mt} is adapted to {Ft}, then E [mt | Ft+j] = mt for any j ≥ 0.

Hopefully the reason is clear: By adaptedness, we know that mt is Ft-measurable.
From the definition of a filtration and fact 3.3.2 on page 97 it follows that mt is Ft+j-
measurable. The result in fact 8.1.2 now follows from fact 3.3.6 on page 100.

To define martingales we let {mt} be a sequence of random variables adapted to a
filtration {Ft}, and satisfying E [|mt|] < ∞ for all t. In this setting, we say that {mt}
is a martingale with respect to {Ft} if

E [mt+1 | Ft] = mt for all t

We say that {mt} is a martingale difference sequence with respect to {Ft} if

E [mt+1 | Ft] = 0 for all t

A martingale difference sequence is so named because if {mt} is a martingale with
respect to {Ft}, then dt = mt−mt−1 is a martingale difference sequence with respect
to {Ft}. See exercise 8.5.8.

Note that the unconditional mean of a martingale difference sequence is always
zero, because

E [mt] = E [E [mt | Ft−1]] = E [0] = 0

Example 8.1.4. The classic example of a martingale is a random walk. Let {ηt} be
an IID sequence of random variables with E [η1] = 0, and let mt := ∑t

j=1 ηj. For
example, ηt might be the payoff on the t-th round of a game (e.g., poker), and mt

is the wealth of a gambler after the t-th round. (We are assuming that wealth starts
at zero and may take arbitrarily large negative values without the gambler getting
ejected from the game and knee-capped by the mafia.) In this case,

mt = mt−1 + ηt =
t

∑
j=1

ηj
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is a martingale with respect to Ft := {η1, . . . , ηt}. That {mt} is adapted to {Ft}
follows immediately from the definition of mt and Ft. Moreover,

E [mt+1 | Ft] = E [η1 + · · · ηt + ηt+1 | Ft]

= E [η1 | Ft] + · · ·E [ηt | Ft] +E [ηt+1 | Ft]

= η1 + · · · ηt +E [ηt+1 | Ft]

= η1 + · · · ηt +E [ηt+1]

= η1 + · · · ηt = mt

Example 8.1.5. A famous example of a martingale in economic theory is Robert
Hall’s hypothesis that consumption is a martingale (Hall, 1978). To understand his
hypothesis, consider an Euler equation of the form

u′(ct) = E t

[
1 + rt+1

1 + ρ
u′(ct+1)

]
where u′ is the derivative of a utility function u, rt is an interest rate and ρ is a
discount factor. The “time t” expectationE t[·] can be thought of as a conditional ex-
pectation E [· | Ft], where Ft contains all variables observable at time t. Specializing
to the case rt+1 = ρ and u(c) = c− ac2/2, the Euler equation reduces to

ct = E t[ct+1] =: E [ct+1 | Ft]

Thus, under the theory, consumption is a martingale with respect to {Ft}.

8.2 Dynamic Properties

The time series models discussed above can display very different dynamics from
the simple IID data processes considered earlier in this text. This has profound im-
plications for asymptotic theory, such as the law of large numbers or central limit
theorem. In this section we try to unravel some of the mysteries, starting with a very
simple case.

8.2.1 A Simple Example: Linear AR(1)

Consider again the scalar Gaussian AR(1) process

xt+1 = α + ρxt + wt+1 with {wt}
IID∼ N (0, 1)
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For simplicity, the variance of the shock wt has been set to one. In order to learn
about the dynamics of this process, let’s begin with some simulated time series and
see what we observe. In all simulations, we take α = 1.

Six individual time series {xt} are shown in figure 8.1, each generated using a differ-
ent value of ρ. The code for generating the figure is given in listing 12. As suggested
by the figure (experiment with the code to verify it for yourself), the simulated time
paths are quite sensitive to the value of the coefficient ρ. Whenever ρ is outside the
interval (−1, 1), the series tend to diverge. If, on the other hand, |ρ| < 1, then the
process does not diverge. For example, if you look at the time series for ρ = 0.9 in
figure 8.1, you will see that, after an initial burn in period where the series is affected
by the initial condition x0, the process settles down to random motion within a band
(between about 5 and 15 in this case).

Listing 12 Code for figure 8.1

# Generates an AR(1) time series starting from x = init

ar1ts <- function(init , n, alpha , rho) {

x <- numeric(n)

x[1] <- init

w <- rnorm(n-1)

for (t in 1:(n-1)) {

x[t+1] <- alpha + rho * x[t] + w[t]

}

return(x)

}

rhos <- c(0.1, -0.1, 0.9, -0.9, 1.1, -1.1)

N <- 200

par(mfrow=c(3,2)) # Arrangement of figures

for (rho in rhos) {

plot(ar1ts(0, N, 1, rho), type="l",

xlab=paste("rho = ", rho), ylab="")

}

We can investigate this phenomenon analytically by looking at expression (8.7).
Since the shocks {wt} are assumed to be normal, it follows from this expression
and fact 1.2.6 on page 24 that xt will be normally distributed whenever x0 is either
normal or constant. Let’s assume that this is the case. In particular, let’s assume that
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Figure 8.1: Dynamics of the linear AR(1) model
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x0 ∼ N (µ0, σ2
0 ), where µ0 and σ0 are given constants. Applying our usual rules for

expectation and variance to (8.7), we can also see that

µt := E [xt] = α
t−1

∑
k=0

ρk + ρtµ0 and σ2
t := var[xt] =

t−1

∑
k=0

ρ2k + ρ2tσ2
0

Since xt is normal and we’ve now found the mean and variance, we’ve pinned down
the marginal distribution Πt for xt. In particular, we have shown that

Πt = N (µt, σ2
t ) = N

(
α

t−1

∑
k=0

ρk + ρtµ0,
t−1

∑
k=0

ρ2k + ρ2tσ2
0

)

Notice that if |ρ| ≥ 1, then the mean and variance diverge. If, on the other hand,
|ρ| < 1, then

µt → µ∞ :=
α

1− ρ
and σ2

t → σ2
∞ :=

1
1− ρ2

In this case, it seems likely that the marginal distribution Πt = N (µt, σ2
t ) of xt con-

verges weakly (see the definition in §2.5.2) to Π∞ := N (µ∞, σ2
∞). Using fact 1.4.3 on

page 33, one can then show that this is indeed the case. That is,

Πt = N (µt, σ2
t )

d→ Π∞ := N (µ∞, σ2
∞) := N

(
α

1− ρ
,

1
1− ρ2

)
(8.11)

Observe that this limit does not depend on the starting values µ0 and σ2
0 . In other

words, Π∞ does not depend on Π0.

Figures 8.2 and 8.3 illustrate convergence of Πt to Π∞, and of the corresponding
densities πt to π∞, when α = 0 and ρ = 0.9. The initial distribution in the figure is
Π0 := N (µ0, σ2

0 ) with arbitrarily chosen constants µ0 = −6 and σ2
0 = 4.2. For both

the sequence of cdfs and the sequence of densities, convergence is from left to right.
The code is given in listing 13, and if you experiment with different choices of µ0

and σ0, you will see that convergence to the same distribution Π∞ always occurs.
The fact that Πt → Π∞ for any choice of Π0 is called global stability, or ergodicity.
A more formal definition is given below.3

Besides being the limiting distribution of the sequence {Πt}, the distribution Π∞

has another special property: If we start with Π0 = Π∞, then we will have Πt = Π∞

3The term ergodicity is sometimes used to signify that the process satisfies the law of large num-
bers, as described in the next section. However, as will be discussed at length there, global stability
and the law of large numbers are closely related.
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Figure 8.2: Convergence of cdfs
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Figure 8.3: Convergence of densities
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Listing 13 Code for figure 8.3

rho <- 0.9

N <- 30 # Number of densities to plot

mu <- -6; sigma2 <- 0.8 / (1 - rho ^2) # mu_0 and sigma^2_0

xgrid <- seq(-10, 7, length =200)

plot(xgrid , dnorm(xgrid , mean=mu, sd=sqrt(sigma2)),

type="l", xlab="", ylab="", main="")

for (i in 2:N) {

mu <- rho * mu

sigma2 <- rho^2 * sigma2 + 1

lines(xgrid , dnorm(xgrid , mean=mu , sd=sqrt(sigma2)))

}

for all t. For example, if, in figure 8.2 we had started at Π0 = Π∞, then we would see
only one curve, which corresponds to Π∞. The sequence of distributions is constant.
For this reason, Π∞ is called the stationary distribution of the process. Note also
that for our model, we have only one stationary distribution. In particular, if we start
at any other cdf Π0 6= Π∞, then we will see motion in the figure as the sequence Πt

converges to Π∞.

The fact that if Π0 = Π∞, then Πt = Π∞ for all t is a very important point, and
as such it’s worth checking analytically as well. The way to do this is by induc-
tion, showing that if Πt = Π∞, then Πt+1 = Π∞ is also true.4 To verify the latter,
one can use the relation xt+1 = α + ρxt + wt+1. The details are left as an exercise
(exercise 8.5.7).

Thus, taking Π0 = Π∞ implies that xt has the same marginal distribution Π∞ for ev-
ery t. In other words, the sequence of random variables {xt} is identically distributed.
It is not, however, IID, because xt and xt+j are not independent (unless ρ = 0). We’ll
say more about this in just a moment.

4The logic is as follows: Suppose we know that (a) Π0 = Π∞, and (b) Πt = Π∞ implies Πt+1 =

Π∞. Then (a) and (b) together imply that Π1 = Π∞. Next, using (b) again, we get Π2 = Π∞. Using
(b) one more time we get Π3 = Π∞, and so on. Hence Πt = Π∞ for all t, as was to be shown.
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8.2.2 Linear AR(1) Continued: The LLN

For consistency of statistical procedures, some version of the LLN is almost always
necessary. The scalar and vector LLNs we have considered so far used the IID as-
sumption. In particular, they required zero correlation between elements of the se-
quence. If we admit nonzero correlation, then, as we’ll see below, the LLN can easily
fail.

Fortunately, the global stability concept we have just investigated provides one way
to obtain the LLN without IID data. Let’s think about this how this connection might
work, starting with the AR(1) model

xt+1 = α + ρxt + wt+1 with {wt}
IID∼ N (0, σ2)

Suppose for now that α = 0, ρ = 1 and σ = 0. Setting σ = 0 means that wt ∼
N (0, 0), or, in other words, wt is identically equal to zero. In this case, the dynamics
reduce to xt+1 = xt, and hence

xt = xt−1 = xt−2 = · · · = x1

If x0 has some given distribution Π∞, then clearly

Πt(s) := P{xt ≤ s} = P{x1 ≤ s} = Π∞(s) for all t

This tells us that {xt} is identically distributed, with common distribution Π∞. (The
distribution Π∞ is stationary for this process, which is why I chose the symbol Π∞.
In fact every distribution is stationary for this process, because if we fix any distri-
bution and let x0 have that distribution, then xt will have that same distribution for
all t, as we just established.) However, the sequence {xt} does not satisfy the LLN.
Indeed,

x̄T :=
1
T

T

∑
t=1

xt =
1
T

T

∑
t=1

x1 = x1

and x1, being a random variable, does not generally converge to anything.5

So under what conditions does the sample mean of the AR(1) process converge to
the common mean of xt? One necessary condition is that the sequence {xt} does
indeed have a common mean. So let’s restrict attention to the case where the pa-
rameters α, ρ and σ are such that some stationary distribution Π∞ does exist,6 and

5The only exception is if x0 is a degenerate random variable, putting all its probability mass on a
single point. If this is not clear, go back to exercise 1.5.28.

6For example, if |ρ| ≥ 1 and σ > 0, then no stationary distribution exists. If |ρ| < 1, then a unique
stationary distribution always exists, for any values of α and σ.
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start the process off with Π0 = Π∞, so that Πt = Π∞ for all t. Hence {xt} is identi-
cally distributed. We want to know when

x̄T
p→ E [xt] = µ∞ :=

∫
sΠ∞(ds) (8.12)

We saw in the previous example (α = 0, ρ = 1, σ = 0) that the mere fact that {xt}
is identically distributed is not enough. We need something more. To investigate
this, let’s recall the proof of the LLN for IID sequences in theorem 1.4.1 (page 34). In
the theorem, we saw that when {xn} is an IID sequence of random variables with
common mean µ and variance σ2, we have

x̄N :=
1
N

N

∑
n=1

xn
p→ E [xn] = µ

For the proof, we just observe that since E [x̄N] = µ, fact 1.4.2 on page 31 implies
that the result will hold whenever var[x̄N] → 0 as N → ∞. In view of fact 1.3.9 on
page 28, we have

var

[
1
N

N

∑
n=1

xn

]
=

1
N2

N

∑
n=1

var[xn] +
2

N2 ∑
n<m

cov[xn, xm]

=
σ2

N
+

2
N2 ∑

n<m
cov[xn, xm]

In the IID case, cov[xn, xm] = 0 for all n < m, and hence the convergence var[x̄N]→ 0
does indeed hold.

Now let’s weaken the assumption of zero correlation, and try to think about whether
the LLN can be salvaged. When correlation is non-zero, the question of whether
or not var[x̄N] → 0 depends whether or not most of the terms cov[xn, xm] are
small. This will be the case if the covariances die out relatively quickly, so that
cov[xn, xn+j] ≈ 0 when j is large. Furthermore, the property that correlations die
out over time is closely related with global stability. For example, let’s take α = 0
and σ = 1, so the dynamics are

xt+1 = ρxt + wt+1 with {wt}
IID∼ N (0, 1) (8.13)

We saw in (8.11) that, under the assumption −1 < ρ < 1, the model has a unique,
globally stable stationary distribution given by

Π∞ := N
(

0,
1

1− ρ2

)
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It turns out that the stability condition−1 < ρ < 1 is precisely what we need for the
covariances to die out. Indeed, fixing j ≥ 1 and iterating with (8.13), we obtain

xt+j = ρjxt +
j

∑
k=1

ρj−kwt+k

we now have

cov[xt+j, xt] = E [xt+jxt] = E

[(
ρjxt +

j

∑
k=1

ρj−kwt+k

)
xt

]

= ρjE [x2
t ] +

j

∑
k=1

ρj−kE [wt+kxt]

= ρjE [x2
t ] +

j

∑
k=1

ρj−kE [wt+k]E [xt]

= ρjE [x2
t ]

(In the second last equality, we used the fact that xt depends only on current and
lagged shocks (see (8.7) on page 229), and hence xt and wt+k are independent.) Since
|ρ| < 1 we now have

cov[xt+j, xt] = ρjE [x2
t ] =

ρj

1− ρ2 → 0 as j→ ∞

To summarize our discussion, to make the LLN work we need covariances to go to
zero as we compare elements of the sequence that are more and more separated in
time. The condition for covariances going to zero is exactly the condition we require
for global stability (i.e., |ρ| < 1).

The LLN result (8.12) in the AR(1) model (8.13) is illustrated in figure 8.4. In the
simulation, we set ρ = 0.8. Note that for this model, the mean

∫
sΠ∞(ds) of Π∞ is

zero. The grey line is a simulated time series of the process. The blue line is the plot
of x̄T against T. As anticipated by the LLN, we see that x̄T converges to zero. The
code for producing figure 8.4 is given in listing 14.

8.2.3 Markov Process Dynamics

Studying the dynamics of the AR(1) process has helped us build intuition, but now
we need to look at more general (and complex) cases. Let’s look again at the Markov
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Figure 8.4: LLN in the AR(1) case

Listing 14 Code for figure 8.4

rho = 0.8

N <- 2000

x <- numeric(N)

sample_mean <- numeric(N)

x[1] <- 1

for (t in 2:N) x[t+1] <- rho * x[t] + rnorm (1)

for (T in 1:N) sample_mean[T] <- sum(x[1:T] / T)

plot(x, col="gray", type="l")

lines(sample_mean , col="blue", lwd=2)

abline(0, 0)
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process (8.5) on page 229, which includes the AR(1) model as a special case. For each
t ≥ 1, let πt denote the density of xt. In particular, for B ⊂ RK, we have∫

B
πt(s) ds = P{xt ∈ B} = P{Ht(x0, w1, w2, . . . , wt) ∈ B}

where Ht is defined on page 229.7 Let’s work towards finding conditions for global
stability, so that this sequence of densities will converge to a unique limit for all
initial π0. First we need some definitions. These definitions include and formalize
the stability-related definitions given for the scalar AR(1) model.

Let’s start with the definition of stationary distributions. Let p(· | s) be the transition
density of the process, as defined in (8.8). Given p, a density π∞ on RK is called
stationary for the process (8.15) if

π∞(s′) =
∫

p(s′ | s)π∞(s) ds for all s′ ∈ RK (8.14)

A stationary density π∞ is called globally stable if the sequence of marginal densi-
ties {πt}∞

t=0 converges to π∞ for any choice of initial density π0.

The interpretation of (8.14) is as follows. Suppose that xt ∼ π∞. Informally, the
probability that xt+1 = s′ should be equal to the probability that xt+1 = s′ given
xt = s, summed over all possible s and weighted by the probability that xt = s.
This is the right-hand side of (8.14). The equality in (8.14) says that this probability
is π∞(s′). In other words, xt+1 ∼ π∞ whenever xt ∼ π∞. This is the reason π∞ is
called a “stationary” distribution.

As a consequence of the preceding discussion, we have the following result:

Fact 8.2.1. Let {xt} be a Markov process with stationary distribution π∞. If x0 ∼ π∞,
then {xt} is identically distributed, with common marginal distribution π∞.

While stability or instability of linear models like the AR(1) process is relatively easy
to study, for the more general Markov model we are studying now, the analysis can
be somewhat tricky. Here is a useful result pertaining to the additive shock model

xt+1 = g(xt) + wt+1 (8.15)

Here {wt}t≥1 is an IID sequence of RK-valued shocks with common density φ, and
x0 has density π0.

7In the presentation below we’re going to work with densities rather than cdfs because the pre-
sentation is a little easier.
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Theorem 8.2.1. If the density φ has finite mean and is strictly positive everywhere on RK,
the function g is continuous and there exist positive constants λ and L such that λ < 1 and

‖g(s)‖ ≤ λ‖s‖+ L for all s ∈ RK (8.16)

then (8.15) has a unique stationary distribution that is globally stable.

Theorem 8.2.1 is a very handy result, although it is but one example of a condition
ensuring global stability.8 We’ll look at how to check the conditions of theorem 8.2.1
in a moment, but before that let’s consider the connection between this stability
theorem and the LLN. We saw in the scalar AR(1) case that this connection is rather
close. This caries over to the general Markov case treated here. Indeed, the stability
conditions in theorem 8.2.1 are sufficient for the LLN:

Theorem 8.2.2. Suppose that the conditions of theorem 8.2.1 hold. Let π∞ be the unique
stationary density. Let {xt} be an generated by (8.15) with x0 ∼ π∞. If h : RK → R is any
function such that

∫
|h(s)|π∞(s)ds < ∞, then9

1
T

T

∑
t=1

h(xt)
p→ E [h(xt)] =

∫
h(s)π∞(s)ds as T → ∞

To apply theorems 8.2.1 and 8.2.2, we need to be able to check the conditions of
theorem 8.2.1. The best way to learn to do this is by looking at examples.

Example 8.2.1. Here’s a variation on the scalar “threshold autoregressive” model:

xt+1 = ρ|xt|+ (1− ρ2)1/2wt+1 with − 1 < ρ < 1 and {wt}
IID∼ N (0, 1)

The conditions of theorem 8.2.1 are satisfied. To see this, we can rewrite the model
as

xt+1 = g(xt) + vt+1, g(s) = ρ|s| and {vt}
IID∼ N (0, 1− ρ2)

Clearly the distribution N (0, 1− ρ2) of vt has finite mean and a density that is ev-
erywhere positive on R. Moreover, |g(s)| = |ρ||s|, so that (8.16) is satisfied with

8In fact the conditions of theorem 8.2.1 are rather strong (in order to make the statement of the
theorem straightforward). There are many other conditions for this kind of stability, based on a
variety of different criteria. For further discussion of the Markov case see Stachurski (2009) and the
references therein.

9The condition that x0 ∼ π∞ is actually unnecessary, but it means that E [h(xt)] =
∫

h(s)π∞(s)ds
for all t, which makes the result a little easier to digest. See Stachurski (2009) for a more formal
discussion of this LLN, and references containing proofs.
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λ = |ρ| and L = 0. By assumption, we have λ < 1, and hence all the conditions
of theorem 8.2.1 are satisfied, and a unique, globally stable stationary density ex-
ists. While for many Markov processes the stationary density has no known closed
form solution, in the present case the stationary density is known to have the form
π∞(s) = 2φ(s)Φ(qs), where q := ρ(1− ρ2)−1/2, φ is the standard normal density
and Φ is the standard normal cdf.

Example 8.2.2. Consider again the VAR(1) process from (8.2), with

xt+1 = a + Λxt + wt+1 (8.17)

To study the dynamics of this process, it’s useful to recall the definition of the spec-
tral norm of Λ, which is given by10

ρ(Λ) := max
s 6=0

‖Λs‖
‖s‖

Let us consider the drift condition (8.16) applied to the law of motion (8.17). In this
case, g(s) = a + Λs, and, using the triangle inequality for the norm (fact 2.1.1 on
page 52), we have

‖g(s)‖ = ‖a + Λs‖ ≤ ‖a‖+ ‖Λs‖

Let λ := ρ(Λ) and let L := ‖a‖. We then have

‖g(s)‖ ≤ ‖Λs‖+ L =
‖Λs‖
‖s‖ ‖s‖+ L ≤ ρ(Λ)‖s‖+ L =: λ‖s‖+ L

We can now see that the drift condition (8.16) will be satisfied whenever the spectral
norm of Λ is less than one.

Example 8.2.3. Consider the STAR model introduced in §8.1.2, where the function g
is given by

g(s) := (α0 + ρ0s)(1− τ(s)) + (α1 + ρ1s)τ(s)

and τ : R→ [0, 1]. Applying the triangle inequality |a + b| ≤ |a|+ |b|, we obtain

|g(s)| ≤ |(α0 + ρ0s)(1− τ(s))|+ |(α1 + ρ1s)τ(s)|
≤ |α0|+ |α1|+ |ρ0| · |s(1− τ(s))|+ |ρ1| · |sτ(s)|

10Readers familiar with the notion of eigenvalues might have seen the spectral norm defined as the
square root of the largest eigenvalue of Λ. The two definitions are equivalent. The second definition
is the most useful for when it comes to numerical computation.
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Letting L := |α0|+ |α1| and λ := max{|ρ0|, |ρ1|}, we then have

|g(s)| ≤ λ|s|+ L

If both |ρ0| and |ρ1| are strictly less than one, the condition (8.16) is satisfied. If, in
addition, τ is continuous, then g is continuous. If the distribution of the shock has,
say, a normal distribution, then it has an everywhere positive density on R, and all
the conditions of theorem 8.2.1 are satisfied. Hence the process is globally stable.

One interesting special case of theorem 8.2.2 is if we take h(xt) = 1{xt ≤ s} for
some fixed s ∈ RK. By (1.8) on page 14, we have

E [1{xt ≤ s}] = P{xt ≤ s} = Π∞(s)

so in this case theorem 8.2.2 yields

1
T

T

∑
t=1
1{xt ≤ s} p→ Π∞(s)

In other words, the ecdf converges to the stationary cdf Π∞, just as for the IID case.

The ecdf is a nonparametric estimator of the cdf. Provided that the cdf Π∞ has
a density, the same idea works for the standard nonparametric density estimator
discussed in §4.4.3. Let’s test this for the model in example 8.2.1. For this model, the
stationary density is known to be π∞(s) = 2φ(s)Φ(qs), where q := ρ(1− ρ2)−1/2,
φ is the standard normal density and Φ is the standard normal cdf. This is the blue
line in figure 8.5. (The value of ρ is 0.95.) Next, we generate a time series, and plot
the nonparametric kernel density estimate 1

Tδ ∑T
t=1 K( s−xt

δ ) as a black line, using R’s
default choice of K and δ. Here T = 5000, and the fit is pretty good. The code for
producing figure 8.5 is given in listing 15.

8.2.4 Martingale Difference LLN and CLT

Next we consider asymptotics for martingale difference sequences. Martingale dif-
ference sequences are important to us because they are good candidates for the LLN
and CLT. To see this, suppose that {mt} is a martingale difference sequence with
respect to filtration {Ft}. Suppose further that {mt} is identically distributed, and
E [m2

1] < ∞. If the variables {mt} are also independent, then the classical LLN and
CLT apply (theorems 1.4.1 and 1.4.2 respectively). Here we do not wish to assume
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Figure 8.5: Stationary density and nonparametric estimate

Listing 15 Code for figure 8.5

rho <- 0.95

delta <- rho / sqrt(1 - rho^2)

T <- 5000

x <- numeric(T)

x[1] = 0

for (t in 2:T) {

x[t] = rho * abs(x[t-1]) + sqrt(1 - rho ^2) * rnorm (1)

}

plot(density(x), xlab="", ylab="", main="")

xgrid <- seq(-4, 4, length =200)

pistar <- function(s) {

return (2 * dnorm(s) * pnorm(s * delta))

}

lines(xgrid , pistar(xgrid), col="blue")
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independence, but with martingale difference sequences we do at least have zero
correlation. To see this, fix t ≥ 0 and j ≥ 1. We have

cov[mt+j, mt] = E [mt+jmt] = E [E [mt+jmt | Ft+j−1]]

Since t + j− 1 ≥ t and {Ft} is a filtration, we know that mt is Ft+j−1-measurable,
and hence

E [E [mt+jmt | Ft+j−1]] = E [mtE [mt+j | Ft+j−1]] = E [mt · 0] = 0

This confirms that martingale difference sequences are uncorrelated, as claimed.

Given the lack of correlation, we might hope that the LLN and CLT will still hold in
some form. Indeed, the following result is true:

Theorem 8.2.3. Let {mt} be identically distributed. If {mt} is a martingale difference
sequence with respect to some filtration {Ft}, then

1
T

T

∑
t=1

mt
p→ 0 as T → ∞ (8.18)

If, in addition, γ2 := E [m2
t ] is positive and finite, and

1
T

T

∑
t=1
E [m2

t | Ft−1]
p→ γ2 as T → ∞

then
√

T

[
1
T

T

∑
t=1

mt

]
= T−1/2

T

∑
t=1

mt
d→ N (0, γ2) as T → ∞ (8.19)

The LLN result in (8.18) can be proved in exactly the the same way we proved the
classical LLN in theorem 1.4.1. Theorem 8.2.3 is a consequence of a martingale CLT
proved in Durrett (1996, theorem 7.4).11 We will use theorem 8.2.3 in our large sam-
ple OLS theory below.

8.3 Maximum Likelihood for Markov Processes

[roadmap]

11Deriving theorem 8.2.3 from the result in Durrett requires some measure theory, and is beyond
the scope of these notes. If you know measure theory then you should be able to work out the proof.
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8.3.1 The Likelihood Function

If we have IID scalar observations x1, . . . , xN from common density pθ, then, as we
saw in §4.3.1, the joint density is the product of the marginals, and the maximum
likelihood estimate (MLE) of θ is

θ̂ := argmax L(θ) where L(θ) =
N

∏
n=1

pθ(xn) (8.20)

If, on the other hand, our data x1, . . . , xT is a time series where the independence
assumption does not hold, then the joint density is no longer the product of the
marginals. To obtain a convenient expression for the joint density in this general
case, let’s begin by constructing a joint density for the first three data points x1, x2, x3.
Using (1.21) on page 26, we can write the joint density as

p(s1, s2, s3) = p(s3 | s1, s2)p(s1, s2)

Applying (1.21) again, this time to p(s1, s2), we get

p(s1, s2, s3) = p(s3 | s1, s2)p(s2 | s1)p(s1)

Extending this from T = 3 to general T we get12

p(s1, . . . , sT) = p(s1)
T−1

∏
t=1

p(st+1 | s1, . . . , st)

We can specialize further if we are dealing with a Markov process. Suppose that
x1, . . . , xT are observations of a globally stable Markov process with transition den-
sity p(st+1 | st) and stationary density π∞. If the process we are observing has been
running for a while, then, given global stability, it is not unreasonable to assume
that x1 ∼ π∞. In this case, our expression for the joint density becomes

p(s1, . . . , sT) = π∞(s1)
T−1

∏
t=1

p(st+1 | st)

where we are using the fact that, for a (first order, time homogeneous) Markov pro-
cess, p(st+1 | s1, . . . , st) = p(st+1 | st).13 Finally, nothing in this expression changes if

12Check it by induction if you wish.
13This is pretty much the defining property of a first order Markov process, and follows from the

general expression xt+1 = G(xt, wt+1) given on page 229.
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we shift to the vector case, so the joint density of a Markov process x1, . . . , xT with
transition density p(st+1 | st) and x1 ∼ π∞ has the form

p(s1, . . . , sT) = π∞(s1)
T−1

∏
t=1

p(st+1 | st) (8.21)

Turning to the likelihood function, let’s suppose now that p depends on an un-
known parameter vector θ ∈ Θ, and write pθ. Since the stationary density π∞ is
determined by pθ (see (8.14) on page 243) we indicate this dependence by writing it
as πθ

∞. The log-likelihood function is then given by

`(θ) = ln πθ
∞(x1) +

T−1

∑
t=1

ln pθ(xt+1 | xt)

In practice it is common to drop the first term in this expression, particularly when
the data size is large. There are two reasons. First, if the data size is large, then there
are many elements in the sum, and the influence of a single element is likely to be
negligible. Second, even though the stationary density πθ

∞ is formally defined by
(8.14), for a great many processes there is no known analytical expression for this
density.14 Here we’ll follow this convention and, abusing notation slightly, write

`(θ) =
T−1

∑
t=1

ln pθ(xt+1 | xt) (8.22)

8.3.2 Example: The ARCH Case

Recall the ARCH process

xt+1 = (a + bx2
t )

1/2wt+1, {wt}
IID∼ N (0, 1) (8.23)

The transition density for this model is the density of xt+1 given xt = s. If xt = s,
then xt+1 ∼ N (0, a + bs2), and hence

p(s′ | s) = (2π(a + bs2))−1/2 exp
{
− (s′)2

2(a + bs2)

}
14In this situation it is still possible to compute the density numerically, using simulation. The

discussion surrounding figure 8.5 gives some idea. A better technique is discussed in Stachurski and
Martin (2008).

JOHN STACHURSKI January 10, 2014



8.3. MAXIMUM LIKELIHOOD FOR MARKOV PROCESSES 251

Since a+ bs2 is the conditional variance of xt+1, the parameters a and b are restricted
to be nonnegative. Moreover, if b < 1, then one can show that the process is globally
stable.15 From (8.22), the log-likelihood function is

`(a, b) =
T−1

∑
t=1

{
−1

2
ln(2π(a + bx2

t ))−
x2

t+1

2(a + bx2
t )

}
(8.24)

Rearranging, dropping terms that do not depend on a or b, and multiplying by 2 (an
increasing transformation), we can rewrite this (abusing notation again) as

`(a, b) = −
T−1

∑
t=1

{
ln zt +

x2
t+1
zt

}
where zt := a + bx2

t (8.25)

Let’s run some simulations to see what this function looks like. In the simulations
we will set T = 500 and a = b = 0.5. Thus, we imagine the situation where,
unbeknownst to us, the true parameter values are a = b = 0.5, and we observe a
time series x1, . . . , x500 generated by these parameters. In order to estimate a and b,
we form the likelihood function (8.25), and obtain the MLEs â and b̂ as the vector
(â, b̂) that maximizes `(a, b).

Four different simulations of ` are given in figure 8.6. In each figure, a separate data
set x1, . . . , x500 is generated using the true parameter values a = b = 0.5, and the
function ` in (8.25) is then plotted. Since the graph of the function is three dimen-
sional (i.e, the function has two arguments), we have plotted it using contour lines
and a color map. Lighter colors refer to larger values. The horizontal axis is a val-
ues, and the vertical axis is b values. The code for producing one of these figures
(modulo randomness) is given in listing 16. The function arch_like(theta, data)

represents ` in (8.25), with theta corresponding to (a, b) and data corresponding to
the time series x1, . . . , xT.

In each of the four simulations, a rough guess of the MLEs can be obtained just by
looking for maximizers in the figures. For example, in simulation (a), the MLEs look
to be around â = 0.44 and b̂ = 0.61. To get more accurate estimates, we can use some
form of analytical or numerical optimization. For this problem, we don’t have any
analytical expressions for the MLEs because setting the two partial derivatives of `
in (8.25) to zero does not yield neat expressions for â and b̂. On the other hand, there
are many numerical routines we can use to obtain the MLEs for a given data set.

15Unfortunately, theorem 8.2.1 (page 244) cannot be used to check global stability, because the
shock is not additive. If you wish to verify global stability then have a look at the techniques in
Chapter 8 of Stachurski (2009).
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The simplest approach is to use one of R’s inbuilt optimization routines. For exam-
ple, given the definition of arch_like in listing 16 and a sequence of observations
x1, . . . , xT stored in a vector xdata, the function arch_like can be optimized numer-
ically via the commands

start_theta <- c(0.65, 0.35) # An initial guess of (a,b)

neg_like <- function(theta) {

return(-arch_like(theta , xdata)) # xdata is the data

}

opt <- optim(start_theta , neg_like , method="BFGS")

Here optim is an built-in R function for numerical optimization of multivariate func-
tions. Most built-in functions in most languages perform minimization rather than
maximization, and optim is no exception. For this reason, the function that we pass
to optim is neg_like, which is −1 times `. The first argument to optim is a vector of
starting values (a guess of the MLEs). The last argument tells optim to use the BFGS
routine, which is variation on the Newton-Raphson algorithm. The return value of
optim is a list, and the approximate minimizing vector is one element of this list
(called par).

In this particular set up, for most realizations of the data and starting values, you
will find that the algorithm converges to a good approximation to the global opti-
mizer. However, there’s no guarantee that it will. In case of problems, it’s useful to
know how these kinds of algorithms work, and how to code up simple implemen-
tations on your own. The next section will get you started.

8.3.3 The Newton-Raphson Algorithm

The Newton-Raphson algorithm is a root-finding algorithm. In other words, given a
function g : R→ R, the algorithm searches for points s̄ ∈ R such that g(s̄) = 0. Any
root-finding algorithm can be used to optimize differentiable functions because, for
differentiable functions, interior optimizers are always roots of the objective func-
tion’s first derivative.

To describe the algorithm, let’s begin with the root-finding problem and then spe-
cialize to optimization. To begin, let g : R→ R, and let s0 be some initial point in R
that we think (hope) is somewhere near a root. We don’t know how to jump from s0

straight to a root of g (otherwise there would be no problem to solve), but what we
can do is move to the root of the function which forms the tangent line to g at s0. In
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(d) Simulation 4

Figure 8.6: Simulations of the function (8.25) with T = 500
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Listing 16 Code for figure 8.6

arch_like <- function(theta , data) {

Y <- data[-1] # All but first element

X <- data[-length(data)] # All but last element

Z <- theta [1] + theta [2] * X^2

return(-sum(log(Z) + Y^2 / Z))

}

sim_data <- function(a, b, n=500) {

x <- numeric(n)

x[1] = 0

w = rnorm(n)

for (t in 1:(n-1)) {

x[t+1] = sqrt(a + b * x[t]^2) * w[t]

}

return(x)

}

xdata <- sim_data (0.5, 0.5) # True parameters

K <- 50

a <- seq(0.3, 0.8, length=K)

b <- seq(0.3, 0.8, length=K)

M <- matrix(nrow=K, ncol=K)

for (i in 1:K) {

for (j in 1:K) {

theta <- c(a[i], b[j])

M[i,j] <- arch_like(theta , xdata)

}

}

image(a, b, M, col=topo.colors (12))

contour(a, b, M, nlevels =40, add=T)
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s0s̄

g

ḡ

s1

Figure 8.7: The first step of the NR algorithm

other words, we replace g with its linear approximation around s0, which is given
by

g̃(s) := g(s0) + g′(s0)(s− s0) (s ∈ R)
and solve for the root of g̃. This point is represented as s1 in figure 8.7, and the value
is easily seen to be s1 := s0− g(s0)/g′(s0). The point s1 is taken as our next guess of
the root, and the procedure is repeated, taking the tangent of g at s1, solving for the
root, and so on. This generates a sequence of points {sk} satisfying

sk+1 = sk −
g(sk)

g′(sk)

There are various results telling us that when g is suitably well-behaved and s0 is
sufficiently close to a given root s̄, then sequence {sk} will converge to s̄.16

To move from general root-finding to the specific problem of optimization, suppose
now that g : R→ R is a differentiable function we wish to maximize. We know that
if s∗ is a maximizer of g, then g′(s∗) = 0. Hence it is natural to begin our search for
maximizers by looking for roots to this equation. This can be done by applying the
Newton-Raphson algorithm to g′, which yields the sequence

sk+1 = sk −
g′(sk)

g′′(sk)
(8.26)

We can extend this algorithm to the multivariate case as well. Let’s suppose that g
is a function of two arguments. In particular, suppose that g is twice differentiable

16In practical situations we often have no way of knowing whether the conditions are satisfied, and
there have been many attempts to make the procedure more robust. The R function optim described
above is a child of this process.
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and g : R2 → R. The gradient vector and Hessian of g at (x, y) ∈ R2 are defined as

∇g(x, y) :=
(

g′1(x, y)
g′2(x, y)

)
and ∇2g(x, y) :=

(
g′′11(x, y) g′′12(x, y)
g′′21(x, y) g′′22(x, y)

)
Here g′i is the first partial of g with respect to its i-th argument, g′′ij second derivative
cross-partial, and so on.

By analogy with (8.26), the Newton-Raphson algorithm for this two dimensional
case is the algorithm that generates the sequence {(xk, yk)} defined by

(xk+1, yk+1) = (xk, yk)− [∇2g(xk, yk)]
−1∇g(xk, yk) (8.27)

from some initial guess (x0, y0).17

For the sake of the exercise, let’s apply this to maximization of (8.25). Let zt be as
defined in (8.25). The first partials are then

∂`

∂a
(a, b) :=

T−1

∑
t=1

[
x2

t+1

z2
t
− 1

zt

]
,

∂`

∂b
(a, b) :=

T−1

∑
t=1

x2
t

[
x2

t+1

z2
t
− 1

zt

]
while the second partials are

∂2`

∂a2 (a, b) :=
T−1

∑
t=1

[
1
z2

t
− 2

x2
t+1

z3
t

]
,

∂2`

∂b2 (a, b) :=
T−1

∑
t=1

x4
t

[
1
z2

t
− 2

x2
t+1

z3
t

]
The cross-partial is

∂2`

∂a∂b
(a, b) :=

T−1

∑
t=1

x2
t

[
1
z2

t
− 2

x2
t+1

z3
t

]
From these expressions we can easily form the gradient vector and the Hessian,
pick an initial guess, and iterate according to (8.27). Figure 8.8 show four iterations
of this procedure, starting from (a0, b0) = (0.65, 0.35).18 In this case the convergence
is quick, and we are already close to the global optimum.

Replication of this figure (modulo randomness) is left as an exercise.

8.4 Models with Latent Variables

To be written. Max likelihood with latent variables. GARCH, HMM, Markov switch-
ing, factor models?

17We are assuming that the Hessian matrix is invertible.
18As before, the simulation uses a = b = 0.5 and T = 500.
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Figure 8.8: Newton-Raphson iterates

8.5 Exercises

Ex. 8.5.1. Using fact 1.4.1 (page 31) as appropriate, prove the following part of
fact 2.5.2: If Xn

p→ X and Yn
p→ Y, then XnYn

p→ XY whenever the matrices are
conformable.

Ex. 8.5.2. Confirm the following claim in fact 2.5.3: If a′xn
p→ a′x for every a ∈ RK,

then xn
p→ x.

Ex. 8.5.3. Let {xn} be a sequence of vectors in R2, where xn := (xn, yn) for each n.
Suppose that xn

p→ 0 (i.e., xn
p→ 0 and yn

p→ 0). Show that ‖xn‖
p→ 0.

Ex. 8.5.4. Verify fact 2.5.1 on page 75. (Note that exercise 8.5.3 is a warm up to this
exercise.)

Ex. 8.5.5. Confirm the claim
√

N (x̄N − µ)
d→ N (0, Σ) in theorem 2.5.1.

Ex. 8.5.6. Let {xn} be an IID sequence of random vectors in RK with E [xn] = 0 and
var[xn] = IK. Let

x̄N :=
1
N

N

∑
n=1

xn and yN := N · ‖x̄N‖2
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What is the asymptotic distribution of {yN}?

Ex. 8.5.7. Suppose that xt+1 = α + ρxt + wt+1, where

xt ∼ π∞ := N
(

α

1− ρ
,

1
1− ρ2

)
and wt+1 ∼ N (0, 1)

Show that xt+1 ∼ π∞ also holds.

Ex. 8.5.8. Let {Ft} be a filtration. Show that if {mt} is a martingale with respect to
{Ft}, then dt = mt −mt−1 is a martingale difference sequence with respect to {Ft}.

Ex. 8.5.9. Let {Ft} be a filtration, and let {mt} be a martingale with respect to {Ft}.
Let ηt := mt + 1, let κt := 2mt, and let γt := m2

t .

1. Is {ηt} a martingale with respect to {Ft}?

2. Is {κt} a martingale with respect to {Ft}?

3. Is {γt} a martingale with respect to {Ft}?

If yes, give a proof. If not, give a counterexample.19

Ex. 8.5.10. Let {ηt} be an IID sequence of scalar random variables with E [η1] = 0
and var[η1] = σ2 > 0. Let {Ft} be the filtration defined by Ft := {η1, . . . , ηt}, and
let zt := t · ηt for each t.

1. Is {zt} IID? Why or why not?

2. Is {zt} a martingale difference sequence with respect to {Ft}? Why or why
not?

Ex. 8.5.11. Let {ηt} be an IID sequence of scalar random variables with

P{η1 = 1} = P{η1 = −1} = 0.5

and let {Ft} be the filtration defined by Ft := {η1, . . . , ηt}. Let

mt :=
t

∑
j=1

ηj and κt := m2
t − t

Show that {κt} is a martingale with respect to {Ft}.
19To give a counterexample, you need to give a specific example of the pair {mt} and {Ft} where

the stated property fails. Look in the course notes for specific examples of martingales.
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Ex. 8.5.12. Consider the scalar sequence xt+1 = ρxt + wt+1, where {wt}
IID∼ N (0, 1)

and x0 = 0. Let Ft := {w1, . . . , wt}. Give conditions on ρ such that

1. {xt} is a martingale with respect to {Ft}.

2. {xt} is a martingale difference sequence with respect to {Ft}.

Ex. 8.5.13. Consider again the scalar Markov sequence xt+1 = ρxt + wt+1. Assume
that {wt} is IID, having Student’s t-distribution with 2 degrees of freedom, and that
−1 < ρ < 1. Prove that this process has a unique, globally stable stationary distri-
bution using theorem 8.2.1.

8.5.1 Solutions to Selected Exercises

Solution to Exercise 8.5.1. Let Xn
p→ X and Yn

p→ Y. To prove that XnYn
p→ XY, we

need to show that the i, j-th element of XnYn converges in probability to the i, j-th
element of XY. By hypothesis, we have

xn
ik

p→ xik and yn
kj

p→ ykj for all k

Applying fact 1.4.1 on page 31 twice, we obtain

xn
ikyn

kj
p→ xikykj for all k

and then

∑
k

xn
ikyn

kj
p→∑

k
xikykj

In other words, the i, j-th element of XnYn converges in probability to the i, j-th ele-
ment of XY.

Solution to Exercise 8.5.2. If a′xn
p→ a′x for every a ∈ RK, then we know in partic-

ular that this convergence holds for the canonical basis vectors. Hence

e′kxn
p→ e′kx for every k

∴ xk
n

p→ xk for every k (elementwise convergence)

∴ xn
p→ x (vector convergence, by definition)
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Solution to Exercise 8.5.3. From fact 1.4.1 on page 31, we know that if g : R → R

is continuous and {un} is a scalar sequence of random variables with un
p→ u, then

g(un)
p→ g(u). We also know that if un

p→ u and vn
p→ v, then un + vn

p→ u + v. By
assumption, we have

xn
p→ 0 and yn

p→ 0

∴ x2
n

p→ 02 = 0 and y2
n

p→ 02 = 0

∴ ‖xn‖2 = x2
n + y2

n
p→ 0 + 0 = 0

∴ ‖xn‖ =
√
‖xn‖2 p→

√
0 = 0

Solution to Exercise 8.5.4. Let {xn} be a sequence of random vectors in RK and x
be a random vector in RK. We need to show that

xn
k

p→ xk for all k ⇐⇒ ‖xn − x‖ p→ 0

A special case of this argument can be found in the solution to exercise 8.5.3. The
general case is similar: Suppose first that xn

k
p→ xk for all k. Combining the various

results about scalar convergence in probability in fact 1.4.1 (page 31), one can then
verify (details left to you) that

‖xn − x‖ :=

√√√√ K

∑
k=1

(xn
k − xk)2 p→ 0 (n→ ∞)

Regarding the converse, suppose now that ‖xn − x‖ p→ 0. Fix ε > 0 and arbitrary k.
From the definition of the norm we see that |xn

k − xk| ≤ ‖xn− x‖ is always true, and
hence

|xn
k − xk| > ε =⇒ ‖xn − x‖ > ε

∴ {|xn
k − xk| > ε} ⊂ {‖xn − x‖ > ε}

∴ 0 ≤ P{|xn
k − xk| > ε} ≤ P{‖xn − x‖ > ε} → 0

The proof is done.

Solution to Exercise 8.5.5. Define

zn :=
√

N (x̄N − µ) and z ∼ N (0, Σ)
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We need to show that zn
d→ z. To do this, we apply the Cramer-Wold device

(fact 2.5.3, page 77) and the scalar CLT (theorem 1.4.2, page 36). To begin, fix a ∈ RK.
Observe that

a′zn :=
√

N (ȳn −E [yn])

where yn := a′xn. Since yn is IID (in particular, functions of independent random
variables are independent) and

var[yn] = var[a′xn] = a′ var[xn]a = a′Σa

the scalar CLT yields

a′zn
d→ N (0, a′Σa)

Since a′z ∼ N (0, a′Σa), we have shown that a′zn
d→ a′z. Since a was arbitrary, the

Cramer-Wold device tells us that zn converges in distribution to z.

Solution to Exercise 8.5.6. By assumption, {xn} is an IID sequence inRK withE [xn] =

0 and var[xn] = IK. It follows from the vector central limit theorem that

√
Nx̄N

d→ z ∼ N (0, IK)

Letting g(s) := ‖s‖2 and applying the continuous mapping theorem (fact 2.5.4 on
page 77), we obtain

yN = ‖
√

Nx̄N‖2 d→ ‖z‖2 =
K

∑
k=1

z2
k

From fact 1.3.4 on page 27 we conclude that yN
d→ χ2(K).

Solution to Exercise 8.5.7. To simplify the algebra, I’ll solve the case where α = 0,
and leave further details to you. Since linear combinations of normals are normal,
we know that xt+1 is normal. Thus, it remains only to show that E [xt+1] = 0 and
var[xt+1] = 1/(1− ρ2). The first claim is true because, by linearity of expectations,

E [xt+1] = E [ρxt + wt+1] = ρE [xt] +E [u] = 0

The second claim also holds, because, from the rule for variance of linear combina-
tions,

var[xt+1] = var[ρxt + wt+1] = ρ2 var[xt] + var[wt+1] + 2ρ cov[xt, wt+1]
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Since xt and wt+1 are independent (xt is a function of current and lagged shocks
only), the final term is zero, and we get

var[xt+1] = ρ2 1
1− ρ2 + 1 =

1
1− ρ2

Solution to Exercise 8.5.8. We need to show that

1. {dt} is adapted to {Ft}, and

2. E [dt+1 | Ft] = 0

To prove that {dt} is adapted to {Ft}, we need to show that dt is a function of
variables in Ft. To see this, observe first that mt is a function of variables in Ft.
Second, mt−1 is a function of variables in Ft−1, and, by the definition of filtrations,
every variable in Ft−1 is also in Ft. Hence, mt−1 is also is a function of variables in
Ft. Since both mt and mt−1 are functions of variables in Ft, clearly dt = mt −mt−1

is also a function of variables in Ft.20

Finally, since E [mt+1 | Ft] = mt (recall that {mt} is a martingale) and E [mt | Ft] =

mt (by fact 8.1.2), we have

E [dt+1 | Ft] = E [mt+1 −mt | Ft] = E [mt+1 | Ft]−E [mt | Ft] = mt −mt = 0

Solution to Exercise 8.5.9. Regarding part 1, {ηt} a martingale with respect to {Ft}.
Firstly, {ηt} adapted to {Ft}, because {mt} adapted to {Ft} by assumption, so mt

is a function of variables in Ft. Hence ηt = mt + 1 is a function of variables in Ft.21

Moreover, using the fact that {mt} is a martingale with respect to {Ft}, we have

E [ηt+1 | Ft] = E [mt+1 + 1 | Ft] = E [mt+1 | Ft] + 1 = mt + 1 = ηt

Regarding part 2, {κt} a martingale with respect to {Ft}. The proof is similar to part
1, and hence omitted.

20The way to think about this intuitively is to think about whether or not dt can be computed on
the basis of information available at time t. Since both mt and mt−1 can be computed at time t, their
difference dt = mt −mt−1 can also be computed.

21Once again, the way to remember this is to recognize that since the value of mt can be computed
at time t (by assumption), the value of ηt = mt + 1 can also be computed.
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Regarding part 3, {γt} is not generally a martingale with respect to {Ft}. For exam-
ple, we saw in the course notes that if {ξt} is an IID sequence of random variables
with E [ξ1] = 0, mt := ∑t

j=1 ξ j and Ft := {ξ1, . . . , ξt}, then {mt} is a martingale with
respect to {Ft}. However, the process {γt} given by γt = m2

t is not a martingale
whenever σ2 := E [ξ2

1] is strictly positive. To see this, observe that

γt+1 = m2
t+1 =

(
t

∑
j=1

ξ j + ξt+1

)2

= (mt + ξt+1)
2 = m2

t + mtξt+1 + ξ2
t+1

∴ E [γt+1 | Ft] = E [m2
t | Ft] +E [mtξt+1 | Ft] +E [ξ2

t+1 | Ft]

Since
E [mtξt+1 | Ft] = mtE [ξt+1 | Ft] = mtE [ξt+1] = 0

and
E [ξ2

t+1 | Ft] = E [ξ2
t+1] = σ2

we now have

E [γt+1 | Ft] = E [m2
t | Ft] + σ2 = m2

t + σ2 = γt + σ2 > γt

Hence {γt} is not a martingale with respect to {Ft}.

Solution to Exercise 8.5.12. It is clear from (8.6) on page 229 that {xt} is adapted to
the filtration for all values of ρ.

Regarding part 1, if ρ = 1, then {xt} is the random walk in example 8.1.4. Hence
{xt} is a martingale with respect to {Ft}. Regarding part 2, if ρ = 0, then xt = wt,
and

E [xt+1 | Ft] = E [wt+1 | Ft] = E [wt+1] = 0

Hence {xt} is a martingale difference sequence with respect to {Ft}.
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Chapter 9

Large Sample OLS

[roadmap]

9.1 Consistency

Let’s return to the linear multivariate regression problem studied in chapters 6 and
7. Although the large sample theory we develop here has applications in a cross-
sectional environment with no correlation between observations, for additional gen-
erality we will imagine ourselves to be in a time series setting. To remind us of this,
observations will be indexed by t rather than n, and the sample size will be denoted
by T rather than N.

The only assumption we will retain from chapter 7 is the linear model assumption
(see 7.1.1). In particular, we assume that our data (y1, x1), . . . , (yT, xT) is generated
by the linear model

yt = x′tβ + ut (9.1)

where β is a K-vector of unknown coefficients, and ut is an unobservable shock. We
let y be the T-vector of observed outputs, so that yt is the t-th element of the T × 1
vector y, and u be the vector of shocks, so that ut is the t-th element of the T × 1
vector u. We let X be the T × K matrix

X :=


x11 x12 · · · x1K
x21 x22 · · · x2K

...
...

...
xT1 xT2 · · · xTK


264
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We continue to assume that X is full column rank (i.e., rank(X) = K).

We will estimate the parameter vector β via least squares. The expression for the
OLS estimate is unchanged:

β̂T := (X′X)−1X′y

Notice also that we are subscripting β̂ with T to make the dependence of the estima-
tor on T explicit. We can make this dependence clearer by rewriting the estimator
in a different way. Multiplying and dividing by T, we get

β̂T =

[
1
T

X′X
]−1

· 1
T

X′y

Expanding out the matrix products (exercise 9.3.1), we obtain

β̂T =

[
1
T

T

∑
t=1

xtx′t

]−1

· 1
T

T

∑
t=1

xtyt (9.2)

Also, taking our usual expression β̂− β = (X′X)−1X′u for the sampling error and
performing a similar manipulation, we get

β̂T − β =

[
1
T

T

∑
t=1

xtx′t

]−1

· 1
T

T

∑
t=1

xtut (9.3)

9.1.1 Assumptions

Let’s now study the properties of this estimator in the time series setting. In this set-
ting, we abandon assumption 7.1.1, which is the exogeneity assumption E [u |X] =
0. The reason is that this assumption excludes too many models. For example, we
showed in §7.5.1 that the assumption fails when we try to estimate the simple AR(1)
model yt+1 = βyt + ut+1 by setting xt = yt−1, thereby producing the regression
model

yt = βxt + ut, t = 1, . . . , T (9.4)

The problem is that for this specification of (9.1), the regressor is correlated with
lagged values of the shock.

We know that under assumption 7.1.1, the OLS estimator is unbiased for β (theo-
rem 7.2.1). In fact assumption 7.1.1 is close to the minimum requirement for unbi-
asedness, and without it there is little chance of establishing this property. Instead
we will aim for a large sample property: consistency of β̂. To this end, we make the
following assumptions:
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Assumption 9.1.1 (Ergodic regressors). The sequence x1, . . . , xT is identically dis-
tributed, and Σxx := E [x1x′1] is positive definite. Moreover,

1
T

T

∑
t=1

xtx′t
p→ Σxx as T → ∞ (9.5)

Two remarks: First, although the observations x1, . . . , xT in assumption 9.1.1 are
required to be identically distributed, they are not assumed to be IID—some correla-
tion is allowed. Second, we are implicity assuming that Σxx := E [x1x′1] exists. This
is a second moment assumption.

Example 9.1.1. Let’s look at a scalar example. Let {xt} be the Markov process in
example 8.2.1 on page 244. To repeat,

xt+1 = ρ|xt|+ (1− ρ2)1/2wt+1 with − 1 < ρ < 1 and {wt}
IID∼ N (0, 1)

As discussed in example 8.2.1, the model has a unique, globally stable stationary
distribution, given by π∞(s) = 2φ(s)Φ(qs), where q := ρ(1− ρ2)−1/2, φ is the stan-
dard normal density and Φ is the standard normal cdf. Let’s assume that x0 has
density π∞.1 In this case, all of the conditions in assumption 9.1.1 are satisfied. Ex-
ercise 9.3.2 asks you to step through the details.

Assumption 9.1.2 (Weak exogeneity). The shocks {ut} are IID with E [ut] = 0 and
E [u2

t ] = σ2. Moreover, the shocks are independent of contemporaneous and lagged
regressors:

ut is independent of x1, x2, . . . , xt for all t

Remark: Assumption 9.1.2 permits dependence between current shocks and future
regressors. It is desirable to admit this possibility in a time series setting, because
current shocks usually feed into future state variables.

Example 9.1.2. For example, in the AR(1) regression (9.4), this will be the case when-
ever the shock process {ut} is IID, because the contemporaneous and lagged regres-
sors x1, . . . , xt are equal to the lagged state variables y0, . . . , yt−1, which in turn are
functions of only y0 and u1, . . . , ut−1, and therefore independent of ut.

1In the econometric setting, it is standard to assume that the first data point is drawn from the
stationary distribution. This seems justified when the process has been running for a long time, and
hence the distribtion of the state has converged to the stationary distribution by the time the first
data point is observed.
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One consequence of assumption 9.1.2 is that we have

E [usut | x1, . . . , xt] =

{
σ2 if s = t

0 if s < t
(9.6)

The proof is an exercise (exercise 9.3.3)

One of the most important consequences of assumptions 9.1.1 and 9.1.2 for us is that
linear functions of {xtut} now form a martingale difference sequence. This allows
us to apply the LLN and CLT results in theorem 8.2.3 (page 248). From this LLN and
CLT, we will be able to show that the OLS estimator is consistent and asymptotically
normal.

Lemma 9.1.1. If assumptions 9.1.1 and 9.1.2 both hold, then, for any constant vector a ∈
RK, the sequence {mt} defined by mt = a′xtut is

1. identically distributed with E [m2
1] = σ2a′Σxxa, and

2. a martingale difference sequence with respect to the filtration defined by

Ft := {x1, . . . , xt, xt+1, u1, . . . , ut} (9.7)

Proof. First let’s check part 1. That {mt} is identically distributed follows from the
assumption that {ut} and {xt} are identically distributed, and that xt and ut are
independent.2 Regarding the second moment E [m2

1], we have

E [m2
1] = E [E [u2

1(a
′x1)

2 | x1]] = E [(a′x1)
2E [u2

1 | x1]]

From independence of u1 and x1, the inner expectation is σ2. Moreover,

(a′x1)
2 = a′x1a′x1 = a′x1x′1a

∴ E [m2
1] = E [a′x1x′1a σ2] = σ2a′E [x1x′1]a = σ2a′Σxxa

To check part 2, note that {mt} is adapted to {Ft}, since mt := uta′xt is a function of
variables in Ft. Moreover, we have

E [mt+1 | Ft] = E [ut+1a′xt+1 | Ft] = a′xt+1E [ut+1 | Ft] = a′xt+1E [ut+1] = 0

(Here the second equality follows from the fact that xt+1 ∈ Ft, while the third fol-
lows from the independence in assumption 9.1.2.) This confirms that {mt} is a mar-
tingale difference sequence with respect to {Ft}.

2The distribution of mt depends on the joint distribution of a′xt and ut. Since a′xt and ut are
independent, their joint distribution is just the product of their marginal distributions. Since {ut}
and {xt} are identically distributed, these marginal distributions do not dependend on t.
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9.1.2 Consistency of β̂T

Under the assumptions of the previous section, the OLS estimator is consistent for
the parameter vector β. In particular, we have the following result:

Theorem 9.1.1. If assumptions 9.1.1 and 9.1.2 both hold, then β̂T
p→ β as T → ∞.

Proof. It suffices to show that the expression on the right-hand side of (9.3) converges
in probability to 0. As a first step, let’s show that

1
T

T

∑
t=1

xtut
p→ 0 (9.8)

is true. In view of fact 2.5.3 on page 77, it suffices to show that, for any a ∈ RK, we
have

a′
[

1
T

T

∑
t=1

xtut

]
p→ a′0 = 0 (9.9)

If we define mt := a′xtut, then (9.9) can be written as T−1 ∑T
t=1 mt. Since {mt}

is an identically distributed martingale difference sequence (see lemma 9.1.1 on
page 267), the convergence T−1 ∑T

t=1 mt
p→ 0 follows from theorem 8.2.3 (page 248).

We have now verified (9.8).

Now let us return to the expression on the right-hand side of (9.3). By assump-
tion 9.1.1 and fact 2.5.2, we see that[

1
T

T

∑
t=1

xtx′t

]−1
p→ Σxx

−1 as T → ∞

Appealing to fact 2.5.2 once more, we obtain

β̂T − β =

[
1
T

T

∑
t=1

xtx′t

]−1

· 1
T

T

∑
t=1

utxt
p→ Σxx

−10 = 0

The proof of theorem 9.1.1 is now done.

9.1.3 Consistency of σ̂2
T

To estimate the variance σ2 of the error terms, we previously used the expression
σ̂2 := SSR/(N − K), where N was the sample size. In the current setting T is the
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sample size, and, since T is assumed to be large relative to K, we have 1/(T − K) ≈
1/T. Hence for our new expression we just take σ̂2

T = SSR/T. (None of the following
theory is affected if we use SSR/(T − K) instead.) In summary,

σ̂2
T :=

1
T

T

∑
t=1

û2
t :=:

1
T

T

∑
t=1

(yt − x′t β̂T)
2 (9.10)

Theorem 9.1.2. If assumptions 9.1.1 and 9.1.2 both hold, then σ̂2
T

p→ σ2 as T → ∞.

Proof. We have

σ̂2
T =

1
T

T

∑
t=1

(yt − x′t β̂T)
2 =

1
T

T

∑
t=1

[ut + x′t (β− β̂T)]
2

Expanding out the square, we get

σ̂2
T =

1
T

T

∑
t=1

u2
t + 2(β− β̂T)

′ 1
T

T

∑
t=1

xtut + (β− β̂T)
′
[

1
T

T

∑
t=1

xtx′t

]
(β− β̂T)

By assumption 9.1.2 and the law of large numbers, the first term on the right-hand
side converges in probability to σ2. Hence it suffices to show that the second and
third term converge in probability to zero as T → ∞ (recall fact 1.4.1 on page 31).
These results follow from repeated applications of fact 2.5.2 on page 75, combined
with various convergence results we have already established. The details are left
as an exercise.

9.2 Asymptotic Normality

Under our assumptions, we will now show that the term
√

T(β̂T − β) is asymptoti-
cally normal. From this information we can develop asymptotic tests and confidence
intervals.

9.2.1 Asymptotic Normality of β̂

Let’s begin by establishing asymptotic normality of the OLS estimator:
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Theorem 9.2.1. Under assumptions 9.1.1 and 9.1.2, the OLS estimator β̂T :=: β̂ satisfies
√

T(β̂T − β)
d→ N (0, σ2Σ−1

xx ) as T → ∞

Proof. Using the expression (9.3) we obtain

√
T(β̂T − β) =

[
1
T

T

∑
t=1

xtx′t

]−1

· T−1/2
T

∑
t=1

utxt (9.11)

Let z be a random variable satisfying z ∼ N (0, σ2Σxx). Suppose we can show that

T−1/2
T

∑
t=1

utxt
d→ z as T → ∞ (9.12)

If (9.12) is valid, then, applying assumption 9.1.1 along with fact 2.5.5, we obtain

√
T(β̂T − β) =

[
1
T

T

∑
t=1

xtx′t

]−1

· T−1/2
T

∑
t=1

utxt
d→ Σ−1

xx z

In view of fact 2.4.6 on page 74 and symmetry of Σ−1
xx ,3 we have

Σ−1
xx z ∼ N (0, Σ−1

xx var[z]Σ−1
xx ) = N (0, Σ−1

xx σ2ΣxxΣ−1
xx ) = N (0, σ2Σ−1

xx )

This completes the proof of theorem 9.2.1, conditional on the assumption that (9.12)
is valid. Let’s now check that (9.12) is valid.

By the Cramer-Wold device (fact 2.5.3 on page 77), it suffices to show that for any
a ∈ RK we have

a′
[

T−1/2
T

∑
t=1

utxt

]
d→ a′z (9.13)

Fixing a and letting mt := uta′xt, the expression on the left of (9.13) can be rewritten
as follows:

a′
[

T−1/2
T

∑
t=1

utxt

]
= T−1/2

T

∑
t=1

uta′xt =: T−1/2
T

∑
t=1

mt

Since z ∼ N (0, σ2Σxx), to establish (9.13) we need to show that

T−1/2
T

∑
t=1

mt
d→ N (0, σ2a′Σxxa) (9.14)

3Remember that the transpose of the inverse is the inverse of the transpose, and the transpose of
Σxx is just Σxx, since all variance-covariance matrices are symmetric.
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From lemma 9.1.1, we already know that {mt} is an identically distributed with
E [m2

1] = σ2a′Σxxa, and a martingale difference sequence with respect to the filtra-
tion defined by

Ft := {x1, . . . , xt, xt+1, u1, . . . , ut}

In view of the martingale difference CLT in theorem 8.2.3, the result (9.14) will hold
whenever

1
T

T

∑
t=1
E [m2

t | Ft−1]
p→ σ2a′Σxxa as T → ∞ (9.15)

Since xt ∈ Ft−1, we have

E [m2
t | Ft−1] = E [u2

t (a
′xt)

2 | Ft−1] = (a′xt)
2E [u2

t | Ft−1] = σ2(a′xt)
2 = σ2a′xtx′ta

The right-hand side of (9.15) is therefore

1
T

T

∑
t=1
E [m2

t | Ft−1] =
1
T

T

∑
t=1

(σ2a′xtx′ta) = σ2a′
[

1
T

T

∑
t=1

xtx′t

]
a

p→ σ2a′Σxxa

where the convergence in probability is due to assumption 9.1.1 and (2.7). This
verifies (9.15), and completes the proof of theorem 9.2.1.

9.2.2 Large Sample Tests

In §7.4.2 we considered the problem of testing a hypothesis about an individual
coefficient βk. Let’s consider this problem again in the large sample setting. The
hypothesis to be tested is

H0 : βk = β0
k against H1 : βk 6= β0

k

In the finite sample theory of §7.4.2, we showed that if the error terms are normally
distributed, then the expression (β̂k − βk)/ se(β̂k) has the t-distribution with N − K
degrees of freedom. In the large sample case, we can use the central limit theorem
to show that the same statistic is asymptotically normal. (In a sense, this is not
surprising, because the t-distribution converges to the standard normal distribution
as the degrees of freedom converges to infinity. However, we cannot use this result
directly, as our model assumptions are quite different.)

Theorem 9.2.2. Let σ̂T be as defined in (9.10) on page 269. Let assumptions 9.1.1 and 9.1.2
hold, and let

se(β̂T
k ) :=

√
σ̂2

Te′k(X
′X)−1ek
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Under the null hypothesis H0, we have

zT
k :=

β̂T
k − β0

k

se(β̂T
k )

d→ N (0, 1) as T → ∞ (9.16)

Proof. Recall from theorem 9.2.1 that

√
T(β̂T − β)

d→ z ∼ N (0, σ2Σ−1
xx ) as T → ∞

where, as usual, β is the true parameter vector. It now follows (from which facts?)
that

e′k[
√

T(β̂T − β)]
d→ e′kz ∼ N (e′kE [z], e′k var[z]ek)

In other words, we have
√

T(β̂T
k − βk)

d→ N (0, σ2e′kΣ−1
xx ek). Making the obvious

transformation, we obtain
√

T(β̂T
k − βk)√

σ2e′kΣ−1
xx ek

d→ N (0, 1) (9.17)

We have already shown that (T−1 ∑T
t=1 xtx′t)

−1 p→ Σxx
−1. Applying (2.7), we then

have

Te′k(X
′X)−1ek = e′k

[
1
T

T

∑
t=1

xtx′t

]−1

ek
p→ e′kΣxx

−1ek

Recall that σ̂2
T

p→ σ2, as shown in theorem 9.1.2. Using this result plus fact 1.4.1 on
page 31, we then have

1/
√

σ̂2
T Te′k(X

′X)−1ek
p→ 1/

√
σ2e′kΣxx

−1ek

In view of (9.17) and fact 1.4.5 on page 34, we then have
√

T(β̂T
k − βk)√

σ̂2
T Te′k(X

′X)−1ek

d→ N (0, 1)

Assuming validity of the null hypothesis (so that β0
k = βk) and cancelling

√
T, we

have established (9.16).

JOHN STACHURSKI January 10, 2014



9.3. EXERCISES 273

9.3 Exercises

Ex. 9.3.1. Verify expression (9.2). Recall here that xt is the t-th row of X.

Ex. 9.3.2. In example 9.1.1 it was claimed that the threshold process studied in that
example satisfies all of the conditions of assumption 9.1.1. Verify that this is the case.

Ex. 9.3.3. Verify the claim that (9.6) holds when assumption 9.1.2 is valid.

Ex. 9.3.4. Let K × 1 random vector θ̂T be an estimator of θ. Suppose that this esti-
mator is asymptotically normal, in the sense that

√
T(θ̂T − θ)

d→ N (0, C)

where C is symmetric and positive definite. It is know that for such a C there exists
a K× K matrix Q such that QCQ′ = I. Let Q̂T be a consistent estimator of Q. Show
that

T‖Q̂T(θ̂T − θ)‖2 d→ χ2(K) (9.18)

Ex. 9.3.5 (To be written. derive ols estimator of ρ in the model of example 8.2.1. (see
zhao.) is it consistent?).

Ex. 9.3.6 (as in example 9.1.2, but ut itself AR(1). then assumptions fail. make this
an exercise?).

9.3.1 Solutions to Selected Exercises

Solution to Exercise 9.3.2. The process {xt} studied in example 9.3.2 is identically
distributed as a result of our assumption that x0 ∼ π∞ (see fact 8.2.1 on page 243).
It remains to check the conditions on Σxx. In the present case,

Σxx = E [x2
t ] =

∫ ∞

−∞
s2π∞(s)ds =

∫ ∞

−∞
s22φ(s)Φ(qs)ds

where q := ρ(1− ρ2)−1/2, φ is the standard normal density and Φ is the standard
normal cdf. To verify that Σxx is positive definite, we need to check that the term
on the right-hand side is strictly positive. This is clearly true, because the function
inside the integral is strictly positive everywhere but zero. To be careful, we should
also check that Σxx is finite, and this is also true because Φ(qs) ≤ 1, and hence∫ ∞

−∞
s22φ(s)Φ(qs)ds ≤

∫ ∞

−∞
s22φ(s)ds = 2

∫ ∞

−∞
s2φ(s)ds = 2
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Finally, we need to show that

1
T

T

∑
t=1

x2
t

p→ Σxx = E [x2
t ] (9.19)

Since the conditions of theorem 8.2.1 (page 244) are satisfied, we can appeal to
theorem 8.2.2 (page 244). This theorem confirms that the convergence in (9.19) is
valid.

Solution to Exercise 9.3.3. Suppose that assumption 9.1.2 (page 266) is valid. We
need to show that

E [usut | x1, . . . , xt] =

{
σ2 if s = t

0 if s < t

On one hand, if s = t, then E [u2
t | x1, . . . , xt] = E [u2

t ] = σ2 by independence. On the
other hand, if s < t, then

E [usut | x1, . . . , xt] = E [E [usut | x1, . . . , xt, us] | x1, . . . , xt]

= E [usE [ut | x1, . . . , xt, us] | x1, . . . , xt]

= E [usE [ut] | x1, . . . , xt]

= E [us0 | x1, . . . , xt] = 0

Solution to Exercises 9.3.4. By assumption we have

Q̂T
p→ Q and

√
T(θ̂T − θ)

d→ z

where z ∼ N (0, C). Applying Slutsky’s theorem, we obtain

Q̂T
√

T(θ̂T − θ)
d→ Qz (9.20)

Clearly Qz is normally distributed with mean 0. Moreover,

var[Qz] = Q var[z]Q′ = QCQ′ = I

In other words, Qz is standard normal. As a result, ‖Qz‖2 ∼ χ2(K). Applying the
continuous mapping theorem to (9.20), we obtain

‖Q̂T
√

T(θ̂T − θ)‖2 d→ ‖Qz‖2 ∼ χ2(K)
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This is equivalent to (9.18).

Incidentally, it should be clear that (9.18) can be used to test the null hypothesis that
θ = θ0. Under the null hypothesis, we have

T‖Q̂T(θ̂T − θ0)‖2 d→ χ2(K)

Fixing α and letting c be the 1− α quantile of the χ2(K) distribution, we reject the
null if

T‖Q̂T(θ̂T − θ0)‖2 > c

This test is asymptotically of size α.
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Chapter 10

Further Topics

[roadmap]

10.1 Model Selection

[roadmap]

- Don’t use tests

10.1.1 Ridge Regression

We are going to begin our discussion of model selection by introducing ridge re-
gression. Ridge regression is an important method in its own right, with connec-
tions to many areas of statistics and approximation theory. Moreover, it immedi-
ately presents us will a class of models we need to choose between, and hence a
model selection problem.

Let’s begin by putting ourselves in the classical OLS setting of chapter 7. In partic-
ular, we will assume that y = Xβ + u, where β is unknown, and u is unobservable,
has unknown distribution, but satisfies E [u |X] = 0 and E [uu′ |X] = σ2I for some
unknown σ > 0. In traditional OLS theory, we estimate β with the OLS estimator

β̂ := (X′X)−1X′y = argmin
b∈RK

‖y− Xb‖2 = argmin
b∈RK

N

∑
n=1

(yn − x′nb)2
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In many ways, β̂ is a natural choice for estimating β. Firstly, it minimizes the em-
pirical risk corresponding to the natural risk function R( f ) = E [(y− f (x))2] when
the hypothesis space F is the set of linear functions. Second, under our current as-
sumptions, it is unbiased for β (theorem 7.2.1 on page 198), and, moreover, it has the
lowest variance among all linear unbiased estimators of β (see the Gauss-Markov
theorem on page 200).

These results, and, in particular, the Gauss-Markov theorem are much celebrated
foundation stones of standard OLS theory. But at least some of this celebration is
misplaced. Rather than looking at whether an estimator is best linear unbiased, a
better way to evaluate the estimator is to consider its mean squared error, which
tells us directly how much probability mass the estimator puts around the object
it’s trying to estimate. (This point was illustrated in figure 4.4 on page 118.) In the
vector case, the mean squared error of a estimator b̂ of β is defined as

mse(b̂) := E [‖b̂− β‖2]

It is an exercise (exercise 10.4.1) to show that the mean squared error can also be
expressed as

mse(b̂) = E [‖b̂−E [b̂]‖2] + ‖E [b̂]− β‖2 (10.1)

This equation is analogous to (4.11) on page 118, and tells us that the mean squared
error is the sum of “variance” and “bias.” To minimize mean squared error we
face a trade off between these two terms. In many situations involving trade off,
the optimal choice is not at either extreme, but somewhere in the middle. Many
estimation techniques exhibit this property: Mean squared error is at its minimum
not when bias is zero, but rather when some small amount of bias is admitted.

Applying this idea to the OLS setting, it turns out that we can find a (biased) linear
estimator that has lower mean squared error that β̂. The estimator is defined as the
solution to the modified least squares problem

min
b∈RK

{
N

∑
n=1

(yn − x′nb)2 + λ‖b‖2

}
(10.2)

where λ ≥ 0 is called the regularization parameter. In solving (10.2), we are mini-
mizing the empirical risk plus a term that penalizes large values of ‖b‖. The effect
is to “shrink” the solution relative to the unpenalized solution β̂. A bit of calculus
shows that the solution to (10.2) is

β̂λ := (X′X + λI)−1X′y (10.3)
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Minimizing the objective in (10.2) is certainly a less obvious approach than simply
minimizing the empirical risk ∑N

n=1(yn − x′nb)2 = ‖y− Xb‖2. One indication as to
why it might be a good idea comes from regularization theory. To illustrate regu-
larization, suppose that Ab = c is an overdetermined system, where A is N × K
with N > K. Let b∗ be the least squares solution: b∗ = argminb ‖Ab− c‖2. Sup-
pose in addition that c cannot be calculated perfectly, due to some form of measure-
ment error. Instead we observe c0 ≈ c. In the absence of additional information,
you might guess that the best way to compute an approximation to b∗ is to solve
minb ‖Ab− c0‖2, obtaining the least squares solution to the system Ab = c0. Sur-
prisingly, it turns out that this is not always the case, especially when the columns
of A are almost linearly dependent. Instead, one often does better by minimizing
‖Ab− c0‖2 + λ‖b‖2 for some small but positive λ. This second approach is called
Tikhonov regularization.

While the theory of Tikhonov regularization is too deep to treat in detail here, we can
illustrate the rather surprising benefits of regularization with a simulation. In our
simulation, A will be chosen fairly arbitrarily, but such that the columns are quite
close to being linearly dependent. To simplify, we first set b∗ := (10, 10, . . . , 10), and
then set c := Ab∗. By construction, b∗ is then a solution to the system Ab∗ = c, and
also the least squares solution (because it solves minb ‖Ab− c‖2).

When measuring c we will corrupt it with a Gaussian shock. In particular, we draw
c0 ∼ N (c, σ2I) where σ is a small positive number. We then plot the ordinary least
squares solution based on c0, which minimizes ‖Ab − c0‖2, and the regularized
solution, which minimizes ‖Ab− c0‖2 +λ‖b‖2. The former are plotted against their
index in black, while the latter are plotted in blue. The true solution b∗ is plotted in
red. The result is figure 10.1. The figure shows 20 solutions each for the ordinary and
regularized solutions, corresponding to 20 draws of c0. The regularized solutions
are clearly better on average.

Of course, this result is dependent on a reasonable choice for λ. If you experiment
with the code (listing 17), you will see that for very small values of λ, the regular-
ized solutions are almost the same as the unregularized solutions. Conversely, very
large values of λ pull the regularized solutions too close to the zero vector. Such
a situation is depicted in figure 10.2, where the value of λ has been increased by a
factor of 50. We can see from the figure that the variance of the regularized solutions
has fallen even further, but they are now substantially biased.

Tikhonov regularization gives some understanding as to why the ridge regression
estimator β̂λ can perform better than β̂. While β̂ is the solution to the least squares
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Figure 10.1: Effect of Tikhonov regularization, λ = 1
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Figure 10.2: Effect of Tikhonov regularization, λ = 50
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Listing 17 Effect of Tikhonov regularization

sigma <- 0.5 # Parameterizes measurement error for c

lambda <- 1 # Regularization parameter

numreps <- 20 # Number of times to solve system

# Construct an arbitrary N x K matrix A

N <- 40; K <- 20

A <- matrix(nrow=N, ncol=K)

A[,1] <- 1

for (i in 2:K) {

A[,i] <- A[,i-1] + rnorm(N, sd=0.1)

}

Ap <- t(A) # A transpose

bstar <- rep(10, K) # True solution

c <- A %*% bstar # Corresponding c

# Create empty plot

plot(bstar , type="n", ylim=c(6, 14), xlab="", ylab="b")

# Plot the solutions

for (j in 1: numreps) {

# Observe c with error

c0 <- c + rnorm(N, sd=sigma)

# Compute the regularized solution

b1 <- solve((Ap %*% A + lambda * diag(K)), Ap %*% c0)

lines(b1, col="blue")

# Compute the standard least squares solution

b2 <- lm(c0 ~ 0 + A)$coefficients

lines(b2, col="black", lty=2)

}

lines(bstar , lwd=2, col="red")

JOHN STACHURSKI January 10, 2014



10.1. MODEL SELECTION 281

problem minb ‖y−Xb‖2, the ridge regression estimator β̂λ is the solution to the reg-
ularized problem minb ‖y− Xb‖2 + λ‖b‖2. Since y is indeed a noisy observation,
we can expect that the regularized estimator will sometimes perform better.

In fact, it turns out that β̂λ can always outperform β̂, in the sense that there always
exists a λ > 0 such that mse(β̂λ) < mse(β̂). This was proved by Hoerl and Kennard
(1970), and the details of the argument can be found there. As mentioned above, this
implies that the estimator β̂λ is biased (see exercise 10.4.2). The reduction in mean
squared error over the least squares estimator occurs because, for some intermediate
value of λ, the variance of β̂λ falls by more than enough to offset the extra bias.

It is worth emphasizing two things before we move on. One is that, with the right
choice of λ, the ridge regression estimator β̂λ outperforms β̂ even though all of the
classical OLS assumptions are completely valid. The other is that the right choice of
λ is an important and nontrivial problem. This problem falls under the heading of
model selection, which is the topic treated in the next few sections.

10.1.2 Subset Selection and Ridge Regression

One problem frequently faced in specific regression problems is which variables to
include. For example, if we are comparing crime rates across different cites, we can
think of any number of variables that might be relevant (median wage, unemploy-
ment, police density, population, etc., etc.). The same is true if we are trying to model
credit default rates for some group of firms or individuals, educational attainment
across schools, adoption of technologies, demand for certain products, and so on.
And a similar problem of variable selection arises in time series models, where we
want to know how many lags of the state variables to include. The general problem
is known as subset selection, since we are trying to choose the right subset of all
candidate regressors.

This problem takes on another dimension (no pun intended) when we start to think
about basis functions. Given a set of covariates x, we have the option to map this into
a larger vector φ(x) using basis functions, as discussed in §6.2.1. For example, given
a single covariate x, we may consider mapping it into φ(x) = (1, x, x2, . . . , xd) and
regressing y on φ(x). This amounts to polynomial regression, where the hypothesis
space is

F :=
{

all functions of the form f (x) = b0x0 + b1x1 + · · ·+ bdxd
}
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Polynomial regression was discussed extensively in §4.6.2. As we saw in figures 4.18–
4.21 (page 145), a good choice of d is crucial. Choosing d is another example of the
subset selection problem because we are trying to decide whether to include the
regressor xj for some given j.

Subset selection can be viewed from the lens of empirical risk minimization. Sup-
pose that we are trying to model a given system with output y and inputs x. We
imagine that x is a large set of K candidate regressors. We will also suppose that
we have already applied any transformations we think might be necessary. For ex-
ample, x might include not just the original regressors but squares of the regressors,
cross-products, and so on. (In other words, we have already applied the basis func-
tions.) If we want to include all regressors then we can minimize empirical risk (i.e.,
solve the least squares problem) over the hypothesis space of linear functions from
RK to R:

L :=
{

all functions of the form f (x) = b′x with b1, . . . , bK ∈ R
}

Doing so produces the usual OLS estimator.

Now suppose that we wish to exclude some subset of regressors {xi, . . . , xj}. Let
I ⊂ {1, . . . , K} be the set of indices of the regressors we want to exclude. Regressing
y on the remaining regressors {xk}k/∈I is equivalent to minimizing the empirical risk
over the hypothesis space

L−I :=
{

all functions f (x) = b′x with bk = 0 for all k ∈ I
}

Once again, we are back to the problem of choosing a suitable hypothesis space over
which to minimize empirical risk.

The subset selection problem has been tackled by many researchers. Well-known
approaches include those based on the Akaike Information Criterion (AIC), the
Bayesian Information Criterion (BIC) and Mallow’s Cp statistic. For example, Mal-
low’s Cp statistic consists of two terms, one increasing in the size of the empirical
risk, and the other increasing in #I, the size of the subset selected. The objective is
to minimize the statistic, which involves trading off poor fit (large empirical risk)
against excess complexity of the hypothesis space (large #I).

One of the problems with subset selection is that there is usually a large number
of possible subsets. With K regressors, there are 2K subsets to step through. To
avoid this problem, one alternative is to use ridge regression. With ridge regression,
the regularization term leads us to choose an estimate with smaller norm. What
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this means in practice is that the coefficients of less helpful regressors are driven
towards zero. The effect is to “almost exclude” those regressors. Of course, the
model selection problem is not solved, because we still need to choose the value of
the regularization parameter λ. However, the problem has been reduced to tuning
a single parameter, rather than searching over 2K subsets.

We can illustrate the idea by reconsidering the regression problem discussed in
§4.6.2. Figures 4.18–4.21 (see page 145) showed the fit we obtained by minimiz-
ing empirical risk over larger and larger hypothesis spaces. The hypothesis spaces
were the sets Pd of degree d polynomials for different values of d. For each d we
minimized the empirical risk over Pd, which translates into solving

min
b

N

∑
n=1

(yn − b′φ(xn))
2 where φ(x) = (x0, x1, . . . , xd)

As discussed above, choosing the right d is a essentially a subset selection problem,
because we are deciding what powers of x to include as regressors. Figure 4.17
(page 143) showed that intermediate values of d did best at minimizing risk.

We can do a very similar thing using ridge regression. First, let’s take as our hy-
pothesis space the relatively large space P14. This space is certainly large enough
to provide a good fit to the data, but with empirical risk minimization the result
is overfitting (see figure 4.21 on page 146). Here, instead of using empirical risk
minimization, we solve the regularized problem

min
b

N

∑
n=1

{
(yn − b′φ(xn))

2 + λ‖b‖2
}

for different values of λ. The data used here is exactly the same data used in the
original figures 4.18–4.21 from §4.6.2. The solution for each λ we denote by β̂λ,
which is the ridge regression estimator, and the resulting prediction function we
denote by f̂λ, so that f̂λ(x) = β̂

′
λφ(x).

The function f̂λ is plotted in red for increasingly larger values of λ over figures 10.3–
10.6. The black line is the risk minimizing function. In figure 10.3, the value of λ is
too small to impose any real restriction, and the procedure overfits. In figure 10.4,
the value of λ is a bit larger, and the fit is good. In figures 10.5 and 10.6, the value of
λ is too large, and all coefficients are shrunk towards zero.

As in §4.6.2, we can compute the risk of each function f̂λ, since we know the under-
lying model (see (4.27) on page 142). The risk is plotted against λ in figure 10.7. The
x-axis is on log-scale. On the basis of what we’ve seen so far, it’s not surprising that
risk is smallest for small but nonzero values of λ.
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Figure 10.3: Fitted polynomial, λ ≈ 0
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Figure 10.4: Fitted polynomial, λ ≈ 0.0004
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Figure 10.5: Fitted polynomial, λ ≈ 18
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Figure 10.6: Fitted polynomial, λ ≈ 2200
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Figure 10.7: The risk of f̂λ plotted against λ

10.1.3 A Bayesian Perspective

The ideal case with model selection is that we have clear guidance from theory
on which regressors to include, which to exclude, which functional forms to use,
which values of our regularization parameter to choose, and so on. If theory or
prior knowledge provides this information then every effort should be made to ex-
ploit it. One technique for injecting prior information into statistical estimation is
via Bayesian analysis. Bayesian methods are currently very popular in economet-
rics and other fields of statistics (such as machine learning), and perhaps a future
version of these notes will give them more attention. Nevertheless, the brief treat-
ment we present in this section does provide useful intuition on their strengths and
weaknesses. In what follows, we focus on Bayesian linear regression.

To begin, let’s recall Bayes’ formula, which states that for any sets A and B we have

P(A | B) = P(B | A)P(A)

P(B)

This formula follows easily from the definition of conditional probability on page 6.
An analogous statement holds true for densities, although the derivation is a bit
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more involved.

The main idea of Bayesian analysis is to treat parameters as random variables, in the
sense of being unknown quantities for which we hold subjective beliefs regarding
their likely values. These subjective beliefs are called priors. Suppose for example
that we observe input-output pairs (y1, x1), . . . , (yN, xN). We assume that the pairs
satisfy y = Xβ + u. To simplify the presentation we will assume that X is non-
random. (Taking X to be random leads to the same conclusions but with a longer
derivation. See, for example, Bishop, 2006, chapter 3). As before, u is random and
unobservable. The new feature provided by the Bayesian perspective is that we take
β to be random (and unobservable) as well. While u and β are unobservable random
quantities, let’s suppose that we have subjective prior beliefs regarding their likely
values, expressed in the form of probability distributions. Here we will take the
priors to be u ∼ N (0, σI) and β ∼ N (0, τI).

Given our model y = Xβ + u, our prior on u implies that the density of y given β is
N (Xβ, σI). In generic notation, we can write our distributions as

p(y | β) = N (Xβ, σI) and p(β) = N (0, τI) (10.4)

Applying Bayes formula to the pair (y, β) , we obtain

p(β | y) = p(y | β)p(β)

p(y)
(10.5)

The left-hand side is called the posterior density of β given the data y, and repre-
sents our new beliefs updated from the prior on the basis of the data y.

Often we wish to summarize the information contained in the posterior, by looking
at the “most likely” value of β given our priors and the information contained in
the data. We can do this by looking either at the mean of the posterior, or at its
maximum value. The maximizer of the posterior is called the maximum a posteriori
probability (MAP) estimate. Taking logs of (10.5) and dropping the term that does
not contain β, it can be expressed as

β̂M := argmax
β

{ln p(y | β) + ln p(β)} (10.6)

Inserting the distributions in (10.4), dropping constant terms and multiplying by
−1, we obtain (exercise 10.4.3) the expression

β̂M = argmin
β

{
N

∑
n=1

(yn − x′nβ)2 +
σ2

τ2 ‖β‖
2

}
(10.7)
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This is exactly equivalent to the penalized least squares problem (10.2) on page 277,
where the regularization parameter λ is equal to (σ/τ)2. In view of (10.3), the solu-
tion is

β̂M := (X′X + (σ/τ)2I)−1X′y

Thus, Bayesian estimation provides a principled derivation of the penalized least
squares method commonly known as ridge regression. Previously, we justified
ridge regression via Tikhonov regularization. Here, Bayesian analysis provides the
same regularization, where regularization arises out of combining prior knowledge
with the data. Moreover, at least in principle, the value (σ/τ)2 is part of our prior
knowledge, and hence there is no model selection problem.

In practice one can of course question the assertion that we have so much prior
knowledge that the regularization parameter λ := (σ/τ)2 is pinned down. If not,
then we are back at the model selection problem. In the next section we forgo the
assumption that this strong prior knowledge is available, and consider a more au-
tomated approach to choosing λ.

10.1.4 Cross-Validation

The most natural way to think about model selection is to think about minimizing
risk. Recall that, given loss function L and a system producing input-output pairs
(y, x) ∈ RK+1 with joint density p, the risk of a function f : RK → R is the expected
loss

R( f ) := E [L(y, f (x))] =
∫ ∫

L(t, f (s))p(t, s) dt ds

that occurs when we use f (x) to predict y. Now suppose that we observe N IID

input-output pairs
D := {(y1, x1), . . . (yN, xN)}

Intuitively, given a selection of models (or estimation procedures), we would like
to find the one that takes this data set D and returns a predictor f̂ such that f̂ has
lower risk than the predictors returned by the other models. Here we have to be a
bit careful in defining risk, because if we simply define the risk asE [L(y, f̂ (x))] then
we are taking expectation over all randomness, including that in f̂ , which depends
implicitly on the data set D. That’s not a bad idea per-se, and we discuss it further
in §10.1.5. But what we want to do for now is just take the data set as given, and
see how well we can do in terms of predicting new values as evaluated by expected
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loss. Hence we define the risk of f̂ as the expected loss taking D (and hence f̂ ) as
given:

R( f̂ | D) := E [L(y, f̂ (x)) | D] =
∫ ∫

L(t, f̂ (s))p(t, s) dt ds

If we have a collection of models M indexed by m, and f̂m is the predictor produced
by fitting model m with data D, then we would like to find the model m∗ such that

R( f̂m∗ | D) ≤ R( f̂m | D) for all m ∈ M

The obvious problem with this idea is that risk is unobservable. If we knew the joint
density p then we could calculate it, but then again, if we knew p there would be no
need to estimate anything in the first place.

Looking at this problem, you might have the following idea: Although we don’t
know p, we do have the data D, which consists of IID draws from p. From the law
of large numbers, we know that expectations can be approximated by averages over
IID draws, so we could approximate R( f̂ | D) by

1
N

N

∑
n=1

L(yn, f̂ (xn))

where the pairs (yn, xn) are from the training data D. However, if you think about
it for a moment more, you will realize that this is just the empirical risk, and the
empirical risk is a very biased estimator of the risk. This point was discussed ex-
tensively in §4.6.2. See, in particular, figure 4.17 on page 143. The point that figure
made was that complex models tend to overfit, producing low empirical risk, but
high risk. In essence, the problem is that we are using the data D twice, for conflict-
ing objectives. First, we are using it to fit the model, producing f̂ . Second, we are
using it to evalute the predictive ability of f̂ on new observations.

So what we really need is fresh data. New data will tell us how f̂ performs out of
sample. If we had J new observations (yv

j , xv
j ), then we could estimate the risk by

1
J

J

∑
j=1

L(yv
j , f̂ (xv

j ))

Of course, this is not really a solution, because we don’t have any new data in gen-
eral. One way that statisticians try to work around this problem is to take D and
split it into two disjoint subsets, called the training set and the validation set. The
training set is used to fit f̂ and the validation set is used to estimate the risk of f̂ . We
then repeat this for all models, and choose the one with lowest estimated risk.
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Since data is scarce, a more common procedure is cross-validation, which attempts
to use the whole data set for both fitting the model and estimating the risk. To
illustrate the idea, suppose that we partition the data set D into two subsets D1 and
D2. First, we use D1 as the training set and D2 as the validation set. Next, we use
D2 as the training set, and D1 as the validation set. The estimate of the risk is the
average of the estimates of the risk produced in these two steps.

Of course, we could divide the data into more than two sets. The extreme is to
partition D into N subsets, each with one element (yn, xn). This procedure is called
leave-one-out cross validation. Letting D−n := D \ {(yn, xn)}, the data set D with
just the n-th data point (yn, xn) omitted, the algorithm can be expressed as follows:

Algorithm 1: Leave-one-out cross-validation

1 for n = 1, . . . , N do
2 fit f̂−n using data D−n ;
3 set rn := L(yn, f̂−n(xn)) ;
4 end
5 return r := 1

N ∑N
n=1 rn

At each step inside the loop, we fit the model using all but the n-th data point, and
then try to predict the n-th data point using the fitted model. The prediction quality
is evaluated in terms of loss. Repeating this n times, we then return an estimate of
the risk, using the average loss. On an intuitive level, the procedure is attractive
because we are using the available data quite intensively, but still evaluating based
on out-of-sample prediction.

In terms of model selection, the idea is to run each model through the cross-validation
procedure, and then select the one that produces the lowest value of r, the estimated
risk. Let’s illustrate this idea, by considering again the ridge regression procedure
used in §10.1.2. In this problem, the set of models is indexed by λ, the regulariza-
tion parameter in the ridge regression. The data set D is the set of points shown in
figures 10.3–10.6. For each λ, the fitted function f̂λ is

f̂λ(x) = β̂
′
λφ(x) where β̂λ := argmin

b

N

∑
n=1

{
(yn − b′φ(xn))

2 + λ‖b‖2
}

Recall here that φ(x) = (x0, x1, . . . , xd) with d fixed at 14, so we are fitting a poly-
nomial of degree 14 to the data by minimizing regularized least squares error. The
amount of regularization is increasing in λ. The resulting functions f̂λ were shown
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for different values of λ in figures 10.3–10.6. Intermediate values of λ produced the
best fit in terms of minimizing risk (see figures 10.4 and 10.7).

In that discussion, we used the fact that we knew the underlying model to evaluate
the risk. Since we could evaluate risk, we were able to determine which values of
λ produced low risk (figure 10.7). In real estimation problems, risk is unobservable,
and we need to choose λ on the basis of the data alone (assuming we don’t have
prior knowledge, as in the Bayesian case—see §10.1.3). Let’s see how a data-based
procedure such as cross-validation performs in terms of selecting a good value of λ.

In this experiment, for each λ in the grid

lambda <- exp(seq(-22, 10, length =10))

we perform leave-one-out cross-validation as in algorithm 1. The fit at each step
within the loop is via ridge regression, omitting the n-th data point, and the result-
ing polynomial is used to predict yn from xn. The prediction error is measured by
squared loss. In other words, for each λ in the grid, we use the following algorithm
to estimate the risk:

Algorithm 2: Leave-one-out cross-validation for ridge regression

1 for n = 1, . . . , N do
2 set β̂λ,−n := argminb ∑i 6=n{(yi − b′φ(xi))

2 + λ‖b‖2} ;

3 set rλ,n := (yn − β̂
′
λ,−nφ(xn))2 ;

4 end
5 return rλ := 1

N ∑N
n=1 rλ,n

The value of λ producing the smallest estimated risk rλ is around 0.015. This is
in fact very close to the value that minimizes the actual risk (see figure 10.7 on
page 286). The associated function f̂λ is plotted in red in figure 10.8, and indeed
the fit is excellent. In this instance, our fully automated procedure is very success-
ful.

10.1.5 The Theory of Model Selection

Generalization error.

Minimizer is regression function.

Variance-bias interpretation?
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Figure 10.8: Fitted polynomial, λ ≈ 0.015

Best is prior knowledge: choose the regression function.

Is there one algorithm that outperforms all others over all possible specifications of
the DGP?

10.2 Method of Moments

- IV, method of moments, GMM, simulated method of moments.

Change following to vector case.

GMM is a generalization of the plug in estimator (which is a special case of ERM).

Suppose we want to estimate unknown quantity

θ :=
∫

h(s)F(ds) = E [h(x)]

The plug in estimator is

θ̂ :=
∫

h(s)FN(ds) =
1
N

N

∑
n=1

h(xn)
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The method of moments is a generalization of this idea. We want to estimate θ

where
g(θ) = E [h(x)] (10.8)

The method of moments estimator θ̂ is the solution to

g(θ̂) =
1
N

N

∑
n=1

h(xn) (10.9)

We can express the same thing slightly differently, replacing (10.8) with

E [g(θ)− h(x)] = 0 (10.10)

and (10.9) with
1
N

N

∑
n=1

[g(θ̂)− h(xn)] = 0 (10.11)

Generalized method of moments extends this idea further, by replacing (10.10) with
the more general expression

E [G(θ, x)] = 0 (10.12)

and (10.11) with the empirical counterpart

1
N

N

∑
n=1

G(θ̂, xn) = 0 (10.13)

10.3 Breaking the Bank

- Gaussian copula

10.4 Exercises

Ex. 10.4.1. Verify the claim in (10.1) that mse(b̂) = E [‖b̂−E [b̂]‖2] + ‖E [b̂]− β‖2.

Ex. 10.4.2. Derive the expectation of the ridge regression estimator β̂λ. In particular,
show that β̂λ is a biased estimator of β when λ > 0.

Ex. 10.4.3. Verify (10.7) on page 287 using (10.4) and (10.6).
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Chapter 11

Appendix A: An R Primer

These notes use the statistical programming language R for applications and illus-
tration of various statistical and probabilistic concepts. This chapter gives a quick
introduction.

11.1 The R Language

[roadmap]

11.1.1 Why R?

It probably behooves me to say a few words about why I want you to learn R. R
is not trivial to learn. And perhaps you like using Eviews/STATA/whatever be-
cause it’s nice and simple: point and click, and it’s done. Who needs to learn a
fancy programming language? The short answer is that computers and computing
are radically changing econometrics and statistics, and opening up a world of new
possibilities. Let’s leave point and click regression for the high-school kiddies. Real
programming skills will set you free.

Here’s an example. Let’s say that you are interested in development and micro-
finance. A new development in this area is the arrival of Kiva, a nonprofit orga-
nization that allows people to make small loans over the Internet, mostly to local
entrepreneurs in developing countries. Kiva has been good enough to make almost
all its data freely available for download. This is done through a web-based API
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which returns HTTP web queries in XML or JSON (Javascript Object Notation—a
text based data exchange format suitable for parsing by computers). If you want
to get your hands on Kiva’s data and manipulate it, you need to know a bit about
computing.

The Kiva example illustrates the need for programming skills when obtaining and
parsing data. The other side of the story is what gets done to the data once its
stored on our computer. Once again, good programming skills are what give you the
freedom to do what you want. Computers have opened up a whole new world of
statistical techniques, and not all can or will be conveniently canned and packaged
in a point and click interface. You will need to tell your computer what to do with a
sequence of written text commands—a program.

R is a good way to jump into more computer intensive statistical techniques. It’s
programming language is simple and robust enough to learn easily, and descriptive
enough to do almost anything you want. Either way, in this course you’ll be exposed
to R. Whether you’re converted or not, R is well worth a look.

(Finally, if you’re already a programmer, you might be wondering why I’ve chosen
R over other programming languages popular in econometrics, such as GAUSS or
Matlab. The short answer is that R is certainly as good as any other programming
language for statistics, and it’s also free. Moreover, it’s rapidly becoming the default
language of statistics within statistics departments around the world. That said, the
main aim here is to teach you how to write programs for statistics and econometrics.
Almost all the skills you learn in this course are portable to other languages. The
important this is that you learn how to code up your ideas.)

11.1.2 Introducing R

What is R? The R homepage (http://www.r-project.org/) introduces R as a lan-
guage and environment for statistical computing and graphics, designed as an open
source implementation of S (the latter being a statistics language developed at Bell
Laboratories. The fact that R is open source means that R is

• free as in “free beer”—it costs nothing to download

• free as in “free speech”—owned by the community, for the community

Despite being free, R is every bit as good as commercial statistical packages.
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Of course R is not perfect. Someone once said that the best thing about R is that
it was written by statisticians. . . and the worst thing about R is that it was written
by statisticians. That’s pretty accurate: It’s a great environment to jump into and
do serious analysis, but the language is a little quirky relative to some of the more
elegant modern programming languages (Python, etc.). It also has a steep learning
curve relative to point-and-click style environments such as Eviews and STATA.

On the other hand, R contains a complete, well-structured programming language,
which allows users to tackle arbitrarily sophisticated problems. It has excellent
graphics and visual presentation, combining sensible defaults with good user con-
trol. It implements a vast range of statistical functions, tests and graphical tech-
niques, including linear and nonlinear modelling, classical statistical tests, time-
series analysis, classification, and so on. More can be found by perusing the avail-
able packages on http://cran.r-project.org/.

11.1.3 Getting Started

R can be downloaded from http://www.r-project.org/. Typically, the latest ver-
sion and add on packages will be found on CRAN—the Comprehensive R Archive
Network. CRAN can be accessed from the R homepage, where you will be directed
to a local mirror of the archive.

A quick Google search will provide lots of information on getting R up and running.
(Try searching YouTube too—at the time of writing there are some helpful videos.)

I’ll assume that installation has gone fine, and you have just fired up R for the first
time. You should now be greeted with information on the version number, copy-
right, etc., followed by a prompt like so:

>

The first thing you need to know is how to quit:

> q()

If you’re prompted to save your workspace, say no for now.

The second thing you need to know is how to get help. There’s an interactive help
system that can be accessed as follows:

> help(plot)
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or

> ?plot

You’ll be presented with a manual page for the plot function. On my computer
(which is running Linux—might be different for Windows or Mac), pressing “q”
exits the manual page, and returns you to the prompt. If help doesn’t turn anything
up, you can try help.search :

> help.search("plotting")

Overall, the help system is fairly good, and I consult it often. However, it can be
technical, so general Internet searches may be useful too.

Now we’ve covered help and quitting, let’s learn a bit about the command interface.
We are not in the land of point-and-click here, which might make some people ner-
vous. But the command line is highly efficient once you get used to it. Here are a
few tips.

First, try typing

> plo

and press the tab key twice. You’ll be presented with a list of possible expansions.
This is useful if you’re not sure what related commands are available. Also, if the
command you’ve begun is uniquely identified by what you’ve typed so far, it will
be expanded by the tab key to the full command.

Once we start working with our own variables, the same expansion technique will
work for them. This is particularly helpful with long names. If you have a variable
called

interwar.consumption.in.southern.alabama

then typing the first few letters and tabbing out will save a lot of time.

Another useful feature of the command line is the command history, which is ac-
cessed via the up and down arrow keys. For example, to recall a previously entered
command from the current session, press the up arrow key until it reappears. (Try
it and you’ll see.) You can now press enter to re-run the command as is, or edit the
command and then run (use the left and right arrow keys).
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11.2 Variables and Vectors

Now we have some feel for the command line, let’s see how we can put R to good
use. The simplest way to use R is as a fancy calculator. For example, to add 12 and
23 we type

> 12 + 23

and get the response

[1] 35

(Just ignore the [1] for now.) To multiply we type

> 12 * 23

To raise 12 to the power of 23 we type

> 12^23

and so on.

Parentheses are used in a natural way. For example:

> 12 * (2 + 10)

[1] 144

This indicates to the R interpreter that it should first add 2 and 10, and then multiply
the result by 12.

So far so good, but to do anything more interesting we’ll need to use variables

11.2.1 Variables

At the heart of any programming language is the concept of a variable. A variable
is a name (often a symbol such as x or y) associated with a value. For example,

> x <- 5

binds the name x to the value 5. The value 5 is an object stored somewhere in your
computers’ memory, and the name x is associated to that little patch of memory.
(The equal sign = can be used as a substitute for the assignment operator <-, but the
latter is more common.) Figure 11.1 illustrates the idea.

Now, when you use the symbol x, R retrieves that value and uses it in place of x:
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Figure 11.1: Variables stored in memory

> x <- 5

> x

[1] 5

> x + 3

[1] 8

> x

[1] 5

> y <- x + x

> y

[1] 10

Notice how typing the variable name by itself causes R to return the value of the
variable. Notice also that assignment works from right to left: in the statement y
<- x + x, the R interpreter first evaluates the expression x + x and then binds the
name y to the result. Understanding this is important for interpreting commands
such as

> x <- x * 2

First the r.h.s. is evaluated to obtain 10, and then the name x is bound to this number.
Hence, the value of x is now 10.

As before, we are using the * symbol to multiply, as in x * 2. It cannot be omitted:

> x <- x 2

Error: unexpected numeric constant in "x <- x 2"

> x <- x2

Error: object ’x2’ not found

Exponential and division are as follows:
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> x^3

[1] 1000

> x / 3

[1] 3.333333

We can use ls to see what variables we’ve created so far, and rm if we decide that
one of them should be deleted:

> ls()

[1] "x" "y"

> rm(x)

> ls()

[1] "y"

Incidentally, up until now we’ve used simple names for our variables, such as x and
y. More complex names can be used to help us remember what our variables stand
for:

> number_of_observations <- 200

or

> number.of.observations <- 200

Some rules to remember: x1 is a legitimate variable name, but 1x is not (variables
can’t start with numbers). Also, R is case sensitive (a and A are distinct names, etc.)

11.2.2 Vectors

So far, the variables we’ve created have been scalar-valued. Now let’s create some
vectors. A vector is an array of values such as numbers. (Actually, there are other
possibilities besides numbers, as we’ll see soon enough.) Vectors are important in
R. If fact, the “scalar” variables we’ve created so far are stored internally as vectors
of length 1.

> a <- c(2, 5, 7.3, 0, -1)

> a

[1] 2.0 5.0 7.3 0.0 -1.0

Here we’ve created a vector a using the c function, which concatenates the numbers
2, 5, 7.3, 0, and -1 into a vector. The resulting vector is of length 5, and we can verify
this as follows:
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> length(a)

[1] 5

The c function can also concatenate vectors:

> a <- c(2, 4)

> b <- c(6, 8)

> a_and_b <- c(a, b)

> a_and_b

[1] 2 4 6 8

On thing we often want to do is create vectors of regular sequences. Here’s one
way:

> b <- 1:5

> b

[1] 1 2 3 4 5

> b <- 5:1

> b

[1] 5 4 3 2 1

If we need to be a bit more flexible, we can use the function seq:

> b <- seq(-1, 1, length =5)

> b

[1] -1.0 -0.5 0.0 0.5 1.0

Try help(seq) to learn more. To generate a constant array, try rep:

> z <- rep(0, 5)

> z

[1] 0 0 0 0 0

We can also generate vectors of random variables. For example

> x <- rnorm (3) # 3 draws from N(0,1)

> y <- rlnorm (30) # 30 lognormals

> z <- runif (300) # 300 uniforms on [0,1]

We’ll learn more about this later on.
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11.2.3 Indices

Using [k] after the name of a vector references the k-th element:

> a <- c(2, 5, 7.3, 0, -1)

> a[3]

[1] 7.3

> a[3] <- 100

> a

[1] 2 5 100 0 -1

Entering a negative index returns all but the indicated value:

> a <- c(2, 5, 7.3, 0, -1)

> a[-1]

[1] 5.0 7.3 0.0 -1.0

There are other ways to extract several elements at once. The most common is by
putting a vector of integers inside the square brackets like so:

> a[1:4]

[1] 2.0 5.0 7.3 0.0

11.2.4 Vector Operations

Now let’s look at some operations that we can perform on vectors. Most of these
can be performed on scalar variables as well, but remember that scalar variables are
just vectors of length 1 in R, so there’s no need to distinguish.

To begin, consider the vector

> x <- 1:5 # Same as x <- c(1, 2, 3, 4, 5)

We can obtain the sum of all elements via

> sum(x)

[1] 15

and the minimal and maximal values via
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> min(x)

[1] 1

> max(x)

[1] 5

To get the average of the values we use

> mean(x)

[1] 3

while the median is obtained by

> median(x)

[1] 3

The sample variance and standard deviation are obtained by var(x) and sd(x) re-
spectively.

So far we’ve looked at functions that take a vector and return a single number. There
are many others that transform the vector in question into a new vector of equal
length. For example, the log function returns the natural log of each element of the
vector:

> log(x)

[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379

This is a common pattern: The function acts elementwise (i.e., element by element)
on its argument. Here are some more examples, returning the exponential and sine
of x respectively:

> exp(x)

[1] 2.718282 7.389056 20.085537 54.598150 148.413159

> sin(x)

[1] 0.8414710 0.9092974 0.1411200 -0.7568025 -0.9589243

Naturally, we can perform two or more operations at once:

> abs(cos(x))

[1] 0.5403023 0.4161468 0.9899925 0.6536436 0.2836622

> round(sqrt(x), 1)

[1] 1.0 1.4 1.7 2.0 2.2

Now let’s look at arithmetic operations. In general, standard arithmetic operations
like addition and multiplication are performed elementwise. For example
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> a <- 1:4

> b <- 5:8

> a

[1] 1 2 3 4

> b

[1] 5 6 7 8

> a + b

[1] 6 8 10 12

> a * b

[1] 5 12 21 32

How about if we want to multiply each element of a by 2? One way would be to
enter

> a * rep(2, 4) # 4 because length(a) = 4

[1] 2 4 6 8

or, more generally,

> a * rep(2, length(a))

[1] 2 4 6 8

However, there’s a nicer way to do it:

> a * 2

[1] 2 4 6 8

The same principle works for addition, division and so on.

11.3 Graphics

R has strong graphics capabilities when it comes to producing statistical figures.
There are many different ways to create such figures. A common one is the plot()

command. Here’s an example

> x <- seq(-3, 3, length =200)

> y <- cos(x)

> plot(x, y)
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Figure 11.2: Illustration of the plot command

This produces a scatter plot of x and y, as in figure 11.2. If we prefer blue we use
the command plot(x, y, col="blue") instead, producing figure 11.3. To produce
a blue line, try plot(x, y, col="blue", type="l").

If you give only one vector to plot() it will be interpreted as a time series. For
example, try

> x <- rnorm (40)

> plot(x, type="l")

11.3.1 High-Level Graphical Commands

In R, graphical commands are either “high-level” or “low-level.” The function
plot() is an example of a high-level command. Low-level commands do things like
add points, lines and text to a plotting area. High-level commands are built on top
of low-level commands, offering a convenient interface to the creation of common
statistical figures.
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Figure 11.3: Illustration of plot again

The important thing to remember about creating figures in R is that the commands
for a given figure should contain one and only one high-level command, followed
optionally by multiple low-level commands.

Let’s discuss some more examples of high-level commands. Histograms are a really
common way to investigate a univariate data sample. To produce a histogram we
use hist:

> x <- rlnorm (100) # lognormal density

> hist(x)

The output is shown in figure 11.4.

Figure 11.5 is a bit fancier. The code for producing it is

> x <- rnorm (1000)

> hist(x, breaks =100, col="midnightblue")

If you want a background color too, then use par, which sets parameters for the
figure. See the on-line help for details (type “?par” without the quotes).
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Figure 11.4: Illustration of the hist command
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Figure 11.5: Illustration of hist again
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Figure 11.6: Plotting in 3D

There are several other high-level plotting functions for presenting statistical data.
For example, barplot produces bar plots, boxplot produces box plots, pie produces
pie charts, and so on. We will meet some of them as we go along.

Still more high-level graphics functions are available if you want to dig deeper. For
example, contour produces contour maps of 3D data, while persp produces 3D
graphs. A 3D graph produced using persp is shown in figure 11.6. Details are
omitted.

11.3.2 Low-Level Graphical Commands

High-level graphics commands are built on top of low-level commands. Low-level
commands are also available to the user, and can be utilized to add additional compo-
nents to figures that were initially produced by a high-level command. Examples include
points, which adds points, lines, which adds lines described by x and y coordi-
nates, text, which adds text, abline, which adds straight lines, polygon, which
adds polygons (useful for filling regions), arrows, which adds arrows, and legend,
which adds a legend.

The following code gives an example.

> x <- seq(-2 * pi, 2 * pi, length =200)
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Figure 11.7: Adding points and lines

> y <- sin(x)

> z <- cos(x)

> plot(x, y, type="l")

> lines(x, z, col="blue")

First we call the high-level graphics command plot, and then the low-level com-
mand lines. The resulting output is shown in figure 11.7. You can experiment to
see what happens if you issues these commands in the reverse order, or replace the
word lines with plot.

11.3.3 Getting Hardcopy

R provides range of graphics drivers to produce hardcopy. For example, to produce a
histogram as a PDF, try

> x <- rlnorm (100)

> pdf("foo.pdf") # Write to a file called foo.pdf

> hist(x)
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> dev.off()

The command dev.off signals to the graphics driver that you have finished adding
components to foo.pdf. R now writes the PDF output to a file called foo.pdf in
your current working directory. To see what your current working directory is, type
getwd.

11.4 Data Types

[roadmap]

11.4.1 Basic Data Types

Like most programming languages, R can work with and perform operations on
various kinds of data, such as numbers, text and Boolean values (see below). We
can investigate the type of a variable by using either the mode or class function:

> b <- c(3, 4)

> class(b)

[1] "numeric"

> mode(b)

[1] "numeric"

Here both mode and class return "numeric", which indicates that the elements of
the vector are stored as floating point numbers. Floating point numbers (or floats)
are a computer’s approximation to real numbers—see §13.1 for a discussion of the
latter.

Although mode and class returned the same answer in the previous example, we
will see that this is not always the case. In general, mode refers to the primitive data
type, whereas class is more specific. We’ll talk more about classes below.

Another common data type is strings. Strings are pieces of text—any of the al-
phanumeric characters and other symbols on your keyboard. In R, strings have
mode “character.”

> x <- "foobar" # Bind name x to string "foobar"

> mode(x)

[1] "character"
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We can concatenate strings using the paste function:

> paste("foo", "bar")

[1] "foo bar"

By default, the two strings are separated by a space, but we can eliminate the space
as follows:

> paste("foo", "bar", sep="") # Separate by empty string

[1] "foobar"

Here’s a more useful example of paste:

> paste("Today is ", date())

[1] "Today is Mon Feb 28 11:22:11 2011"

In the code above, you will have noticed that, when we work with strings, we usu-
ally write them between quote marks. Why do we do this? The reason is that if we
don’t add quote marks, then R interprets the sequence of letters as the name of a
variable. For example,

> x <- foobar

Error: object ’foobar ’ not found

Here the interpreter looks for the variable foobar, and, not finding it, issues an error
message.

Here’s another example. In §11.3, the command

> hist(x, breaks =100, col="midnightblue")

was used to produce figure 11.5. Here "midnightblue" is a string, that’s passed as
an argument to the function hist. Why can’t we just type

> hist(x, breaks =100, col=midnightblue) # Wrong!

instead? Because then R would think that midnightblue is a variable, and look for
it in the current environment.

There are a few other basic data types besides numeric and character. One is Boolean,
which holds the logical values TRUE and FALSE. As with other types, Boolean val-
ues can be stored in vectors. For example:
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> x <- TRUE

> mode(x)

[1] "logical"

> x <- c(TRUE , TRUE , FALSE)

> mode(x)

[1] "logical"

As we’ll soon see, Boolean vectors are very important in R. To save a bit of typing,
you can use the abbreviations T and F:

> x <- c(T, T, F)

> x

[1] TRUE TRUE FALSE

One thing to remember about vectors is that in any one vector, all data must be of
the same type. For example, suppose that we try to make a vector with two different
modes:

> x <- c(1.1, "foobar")

> mode(x)

[1] "character"

> x

[1] "1.1" "foobar"

We see that the numeric value 1.1 has been converted to a character string, in order
to ensure all elements have the same type.

At this point, an obvious question is: What if we want to store several different data
types as a single object? For example, let’s say we have data on employees at a
given firm, and we want to store their surname and salary together. How should
we accomplish this?

In R, one way to do it is to use a list. A list is like a vector, except that it’s elements
have “names” that can be used to access them, and, in addition, there’s no restriction
on the data types of the elements. Here’s an example, where we create a list using
the list function:

> employee1 <- list(surname="Smith", salary =50000)

Here we’ve given the names surname and salary to the two elements of the list. The
elements can now be accessed via these names using the “$” symbol:
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> employee1$surname

[1] "Smith"

> employee1$salary

[1] 50000

If you’re dealing with a list and you can’t remember the names of the elements, you
can extract them with names:

> names(employee1)

[1] "surname" "salary"

Although we won’t have much cause to use the list function during this course,
we will still be creating quite a lot of lists. The reason is that when R functions need
to return a whole lot of different information, they do so using a list. For example,
whenever we run a regression using the standard linear regression function lm, this
function will return a list that contains information about the estimated coefficients,
the residuals, and so on.

One final point on basic data types is that sometimes we need to test the type of
a variable to make sure it will work in a given operation. If not, we may need to
change its type. For this purpose, R provides a collection of is. and as. functions.
Here’s an example:

> x <- c("100", "200")

> is.numeric(x)

[1] FALSE

> sum(x)

Error in sum(x) : invalid type

> x <- as.numeric(x) # Convert x to numeric

> is.numeric(x)

[1] TRUE

> sum(x)

[1] 300

11.4.2 Data Frames

In statistical programming we work a lot with data sets, reading in data, storing
it, selecting subsets, making changes, and so on. In R, data is usually stored in
data frames. Data frames are special kinds of lists that are used to store “columns”
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of related data. Typically, each column corresponds to observations on a particular
variable. Data frames are a bit like matrices (which we’ll meet later), but the columns
can hold different data types (numeric, character, etc).

Let’s start with a simple and light-hearted example. On the financial blog “Alphav-
ille,” Tracy Alloway noted the correlation between speaking fees paid by major fi-
nancial firms to economist Lawrence Summers (Director of the White House Na-
tional Economic Council) and the relative stability of their share price during the
GFC. The firms in question were Goldman Sachs, Lehman Bros, Citigroup and JP
Morgan, who paid Summers speaking fees of (roughly) $140,000, $70,000, $50,000
and $70,000 respectively. Over the year to April 2009, their share prices fell by 35%,
100%, 89% and 34% respectively.

Let’s record this in a data frame. We can do this in different ways. Perhaps the
easiest is to first put the data in vectors

> fee <- c(140000 , 70000, 50000, 70000)

> price <- c(-35, -100, -89, -34)

and then build a data frame:

> summers <- data.frame(fee , price)

As discussed above, a data frame is a list:

> mode(summers)

[1] "list"

But it’s not just a list, it’s a special kind of list called a data frame:

> class(summers)

[1] "data.frame"

We’ll talk more about the class function in §11.4.3 below. For now, let’s have a look
at our data frame:

> summers

fee price

1 140000 -35

2 70000 -100

3 50000 -89

4 70000 -34
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We see that R has numbered the rows for us, and used the variable names as names
for the columns. We can produce more descriptive column names as follows:

> summers <- data.frame(Speak.Fee=fee , Price.Change=price)

> summers

Speak.Fee Price.Change

1 140000 -35

2 70000 -100

3 50000 -89

4 70000 -34

Since summers is a kind of list, with columns of the data frame corresponding to
elements of the list, the columns can be accessed using their names:

> summers$Speak.Fee

[1] 140000 70000 50000 70000

> summers$Price.Change

[1] -35 -100 -89 -34

(Are you remembering to use the TAB key to expand these long names?) On the
other hand, the column names by themselves won’t work:

> Speak.Fee

Error: object "Speak.Fee" not found

This is because these variables are not part of the current workspace, but rather they
are “hidden” inside the data frame. This data encapsulation is deliberate, and helps
us things organized. It’s the same idea with directories (folders) on computers: Files
are grouped in different directories to keep the organized by topic. Just as we can
have the same file name in different directories, we can have the same column name
in different data frames.

Returning to our data frame, we can also access the data in the data frame using
“matrix style” index notation. For example,

> summers[1, 2] # First row , second column

[1] -35

> summers [2,] # All of second row

Speak.Fee Price.Change

2 70000 -100

> summers [,2] # All of second column

[1] -35 -100 -89 -34
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One thing we could do to make the data frame more descriptive is to replace the row
numbers with the names of the banks. This is done through the row.names function,
which acts on data frames. Let’s see how this works:

> row.names(summers)

[1] "1" "2" "3" "4"

> firm <- c("Goldman", "Lehman", "Citi", "JP Morgan")

> row.names(summers) <- firm

> row.names(summers)

[1] "Goldman" "Lehman" "Citi" "JP Morgan"

Now the summers data frame looks as follows:

> summers

Speak.Fee Price.Change

Goldman 140000 -35

Lehman 70000 -100

Citi 50000 -89

JP Morgan 70000 -34

One of the nice things about data frames is that many R functions know how to
interact with them directly. For example, if we enter

> plot(summers)

we immediately get a scatter plot. If we use the function summary we get a summary
of the data:

> summary(summers)

Speak.Fee Price.Change

Min. : 50000 Min. : -100.00

1st Qu.: 65000 1st Qu.: -91.75

Median : 70000 Median : -62.00

Mean : 82500 Mean : -64.50

3rd Qu.: 87500 3rd Qu.: -34.75

Max. :140000 Max. : -34.00

Here, we plot, run a linear regression and then add the line of best fit to the plot:

> plot(summers)

> reg <- lm(Price.Change ~ Speak.Fee , data=summers)

> abline(reg)
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Figure 11.8: Scatter plot and line of best fit

The resulting plot in figure 11.8 shows positive correlation. (Again, this is light-
hearted, don’t read too much into this.) More discussion of univariate linear regres-
sion is given in §11.5.

11.4.3 A Note on Classes

In the proceeding example, we created a data frame called summers and ran a regres-
sion with the code

> reg <- lm(Price.Change ~ Speak.Fee , data=summers)

If you now type

> summary(reg)

you’ll be presented with a nice table giving you estimated coefficients and other
summary statistics. We’ll talk more about this output in §11.5, but for now I’d like
you to notice that the function summary was used previously in the code

> summary(summers)
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which gave a basic description of the data in the data frame summers. What’s inter-
esting here is that we are using the same function summary with two very different
arguments, and each time R gives an appropriate result. It’s useful to know how
this works.

On one hand, we can check that both the data frame summers and the object reg
returned by the regression are lists:

> mode(reg)

[1] "list"

> mode(summers)

[1] "list"

However, the summary function needs to distinguish between these objects, so that it
knows what kind of information to return. The way this is accomplished is that the
two objects are given addition type information beyond their mode. This second,
more specific, type information is called the objects class:

> class(reg)

[1] "lm"

> class(summers)

[1] "data.frame"

The function summary, when passed an object such as reg, first investigates its class.
Once it knows the class of the object, it knows what action to perform. Functions like
summary, that act differently on different objects according to their class, are called
generic functions.

11.5 Simple Regressions in R

Let’s have a quick look at the basic technique for running regressions in R.

11.5.1 The lm Function

To set up an example, let’s generate some data:

> N <- 25

> x <- seq(0, 1, length=N)

> y <- 5 + 10 * x + rnorm(N)
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Figure 11.9: The data

The data is plotted in figure 11.9, along with the function y = 5 + 10x (in blue). We
can regress y on x as follows:

> results <- lm(y ~ x)

> class(results)

[1] "lm"

The function lm is the standard function for linear, least squares regression. It re-
turns an object of class lm, which, as discussed in §11.4.3, is a kind of list. In this
example, we have bound the name results to this list.

The list object returned by a called to lm includes as its elements various various
other vectors and lists containing the information produced by the regression. For
example, the coefficients are an element of the list:

> results$coefficients

(Intercept) x

4.491593 11.456543

To see the full list, use names(results).
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Figure 11.10: The regression line

There are in fact various “extractor” functions for obtaining coefficients, fitted val-
ues and so on from results. Try, for example,

> coef(results)

> fitted.values(results)

> residuals(results)

On top of these extractor functions that obtain low level information about the out-
put of the regression, several generic functions perform further calculations based
on the results to provide information about the regression. We learned about summary
in §11.4.3. Another such function is abline, which adds the regression line to a plot.
In figure 11.10 we’ve added a regression line via the call

> abline(results , lty=2, lw=2) # Dashed , double thickness

11.5.2 Formulas

Now let’s have another look at the syntax of our call to lm. The argument we used
was y ~ x. This argument is called a formula, which is a special syntax used for
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specifying statistical models in R. Let’s look at some further examples. First, if you
happen to have another predictor z, then you can regress y on x and z via the call

> lm(y ~ x + z)

What’s important to remember is that the “+” symbol does not represent addition
per se—it is part of the formula, and indicates that y should be regressed on x and z.

In regressions such as the one above, the intercept is included by default. We can
also include it explicitly via the call

> lm(y ~ 1 + x + z)

but this is exactly equivalent to the last call. To remove the intercept we can use the
formula

> lm(y ~ 0 + x + z) # Or lm(y ~ x + z - 1)

Finally, we sometimes want R to evaluate the expressions in our formulas as ordi-
nary arithmetic operations. For example, suppose that we want to regress y on the
square of x, rather than x itself. This can be achieved by the call

> lm(y ~ I(x^2))

The function I indicates that the operation x^2 should be treated as an arithmetic
operation, rather than be regarded as part of the formula.
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Chapter 12

Appendix B: More R Techniques

Now let’s dig a bit deeper into R. In this chapter, we’ll learn about working with
files, and also how to code up simple programs.

12.1 Input and Output

Writing programs and getting data in and out of R involves sending information to
the screen and working with files. Let’s run through the basics of how this is done.

12.1.1 The Current Working Directory

Often, when you are working with R, you will have a directory (folder) that contains
files related to the project you are working on—data files, script files containing R
programs, figures you have created, and so on. On the other hand, when you start
R, an internal variable is initialized that stores the current working directory. This
is the directory where R looks for any files you reference at the command line, and
writes files that you create. If you are using something other than a Linux machine,
these two directories will not be automatically matched. This can cause confusion.

On part of this confusion is that some operating systems use the backslash symbol \
to separate directories in a path, while others use the forward slash /. Regardless of
your operating system, however, R uses /. For example, if you are using a Windows
machine and have a directory called "C:\Foobar" on your computer, then R will
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refer to this directory as "C:/Foobar". Please be aware of this in what follows, and
convert forward slashes to backslashes as necessary.

Let’s look at an example. I’ve created a file on my computer called "test.txt". It is
a text file that contains the single line

10 9 8 7 6 5 4 3 2 1

The full path to the file on my Linux machine is

/home/john/emet_project/test.txt

If I start R in "/home/john" then this will be my current working directory. This can
be checked with the command getwd:

> getwd()

[1] "/home/john"

Now I try to read the data in "test.txt" into a vector with the scan function:

> x <- scan("test.txt")

but receive an error message telling me the file cannot be found. The problem is that
"test.txt" is not in the current working directory.

There are a few ways I can rectify this problem, including shifting the file into the
current working directory, but the best solution is to change the current working
directory to where the file is. This can be accomplished as follows:

> setwd("/home/john/emet_project/")

and the call to scan now succeeds:

> x <- scan("test.txt")

Read 10 items

> x

[1] 10 9 8 7 6 5 4 3 2 1

If you want to see the contents of your current working directory, you can do so
with the dir function:

> dir()

[1] "test.txt"
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If I next create a figure and save it, the file will be saved in the current working
directory:

> pdf("foo.pdf")

> plot(x)

> dev.off()

null device

1

> dir()

[1] "foo.pdf" "test.txt"

Two points to finish this section: First, it’s tedious to have to manually set the current
working directory every time you start R. There are work-arounds for all operating
systems. Googling will tell you what you need to know. Second, there may be times
when you want to read data from a file that is located somewhere on your computer,
and it’s easiest to locate that file by point and click. In that case, try the file.choose

function, as in the following example:

x <- scan(file=file.choose ())

On Windows machines, this should open up a dialog box which will allow you to
select the file.

12.1.2 Reading Data in

We have already me the scan function, which is a low-level I/O function for reading
data from files. The scan function returns either a vector or a list, depending on the
contents of the file. When working with data sets, a much more common function
to use is the read.table function, which attempts to read the data from a file into a
data frame.

Let’s look at an example. I’ve created a text file on my computer called "testdf.txt

" with two columns of data that looks as follows:

X Y

1 10

2 20

3 30
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This file is in my current working directory, and I can read it into a data frame as
follows:

> df <- read.table("testdf.txt", header=TRUE)

> df

X Y

1 1 10

2 2 20

3 3 30

> class(df)

[1] "data.frame"

Here I’ve set header=TRUE because the first row contains column names.

The read.table function has many options, which you can investigate ?read.table
. You can skip lines of crud at the start of your file using skip, work with comma
separated values via sep and so on. (R can also handle many foreign data file for-
mats. For example, R can read and write data files in the formats used by Excel,
STATA, SPSS and SAS. Please look up the documentation as required.)

Another thing you can do with read.table and other input functions is read data
directly from the Internet by giving the URL instead of a filename:

> read.table("http://johnstachurski.net/emet/testdf.txt",

header=TRUE)

On your home installation this command should work fine. At work or at univer-
sity it may not, because many office and university computers are behind firewalls,
where HTTP traffic is routed through a proxy server. If R doesn’t know about the
proxy, then you can set it as follows:

Sys.setenv(http_proxy="http://user:pass@proxy :8080")

Here user is your username, pass is your password, and proxy is your proxy server.
(One place to find those details is in your browser, which must be aware of the proxy
server if it’s working. However, you will not be able to see your password.)

If the above command still doesn’t help, you can always save the file in question to
your local hard disk with your browser, and then proceed as before.

JOHN STACHURSKI January 10, 2014



12.1. INPUT AND OUTPUT 327

12.1.3 Other I/O Functions

There are several low level functions for input and output. One is scan, which we
met in §12.1.1. This function is quite flexible, but the most common use is the one
we mentioned: Reading a sequence of numbers from a text file and converting it to
a vector. The vector can then be converted into a matrix if desired—we’ll talk about
this process later.

If no file name is given, then scan reads from the screen:

> x <- scan()

1: 1 12 3 55 128 # Me typing numbers in

6: # And hitting return a second time

Read 5 items

> x

[1] 1 12 3 55 128

Another way to get information in is via the readline function. For example, if
other people are going to use your program, you can get information from them
along the following lines:

> x <- readline("Enter the value of x: ")

Note that the result will be a string, so you may need to call a function such as
as.numeric if you want to convert x to a numeric value.

The last few functions we have discussed pertain to input. Let’s talk briefly about
output. To write a whole data frame, try something along the lines of

> write.table(summers , "summers.txt")

There are many options to this command, and I leave you to investigate.

A lower level function for data output is cat. One important use for this function is
as a substitute for the print function, with more detailed control. For example,

> x <- 3

> cat("The value of x is", x, "\n")

The value of x is 3

The final "\n" tells R to end with a new line. (Try without if you’re not sure what
I mean.) By specifying a file name, we can also write this information to the hard
disk:

> cat("The value of x is", x, "\n", file="test.txt")
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Figure 12.1: Step function

12.1.4 Scripting

Another kind of data you will want to read into R is sequences of commands, or a
programs. Suppose for example that we type the next two commands at the prompt:

> plot(x <- sort(rnorm (50)), type = "s")

> points(x, cex = .5, col = "dark red")

On my computer, these commands produce the graph in figure 12.1. We might
be rather happy with this figure, and decide to save these commands in a file. In
interpreted languages such as R, a sequence of commands saved in a file is often
called a script. A more generic term is program.

There are many reasons why you’ll need to write and work with scripts. As the
tasks you implement become longer and more complicated, typing the commands
one-by-one at the prompt becomes impractical. When you have a long sequence of
commands that need to be executed in a certain order, writing a script allows to you
run the whole sequence of commands easily, isolate problems, make incremental
improvements and so on. The resulting program can then be shared with colleagues,
etc.
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When creating a script for the first time, the most important thing to remember is
that scripts are saved in text files. Students often confuse text files with word pro-
cessor documents, but they are quite different. R will not be able to read a program
written in a word processor such as MS Word unless you specifically save it as a text
file.1

Usually, text files are manipulated with text editors. Pretty much all computing en-
vironments supply a basic text editor. On Windows, a simple one is Notepad, while
on Mac OS you can use TextEdit. On Linux there are many options. Alternatively,
depending on the version of R you are running, you might find that above the R
command line there are several menus. In the “File” menu, you should have the
option to create a script. Selecting this option opens up a simple text editor.

Good text editors include features such as syntax highlighting, automatic indenta-
tion, code completion, and so on. These features may sound minor, but in fact they
make coding much faster and more enjoyable. There are plenty of good open source
text editors. By all means, google around to find out about text editors that play well
with R, and install a nice one on your home computer.

Now let’s say that we’ve written a script in some text editor and we want to run it.
For a short script, the most elementary way to run it is to open up the text file with
the text editor, and then copy and paste into R’s interpreter (i.e., into the command
line, where the > prompt is). While this is not a bad way to start off, a much faster
way is to use the R function source, which reads in commands from a specified text
file:

> source("foobar.R")

For serious scripting this second method is the only viable one. However, note that
the script must be in the current working directory. See §12.1.1 for information on
how to set the current working directory.

Once you are familiar with R, you will find that your work is a mix of reading
in commands from programs (source files), and entering commands at the prompt
(i.e., interacting directly with the interpreter). The latter is always useful for testing,
getting help, and rapid prototyping of programs.

A final comment: Generally speaking, running commands via a script produces the
same result as typing the commands at the prompt one by one. One exception is as

1Yes, if you save as text then you can actually use a word processor to write scripts. But please
don’t. For starters, no-one will take you seriously if you tell them you code in MS Word. It’s just not
cool. More importantly, word processors aren’t designed for the job, and they don’t do it well.
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follows: If I have a variable x and I type x at the prompt and hit return, I get the
value of the variable. In a script run via source, you will need an explicit call to
print or cat to get the information to the screen.

12.2 Conditions

[roadmap]

12.2.1 Comparisons

We have already met the logical values TRUE and FALSE:

> x <- TRUE

> x

[1] TRUE

(In many situations, TRUE and FALSE can be shortened to T and F.) Some expressions
in R evaluate to either TRUE or FALSE. For example:

> 2 > 3

[1] FALSE

> 3 >= 2

[1] TRUE

Here we’re testing for strict and weak inequality respectively, using the relational
operators > and >=. Testing for equality and inequality is as follows:

> 2 == 3 # Note double equal sign!!

[1] FALSE

> 2 != 3

[1] TRUE

The exclamation mark means “not,” and reverses truth values. For example:

> is.numeric("foo")

[1] FALSE

> !is.numeric("foo")

[1] TRUE
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Note the double equal sign when testing for equality. A single equal sign means
assignment (i.e., is equivalent to <-). For example, consider:

> x <- 1

> x == 2 # Testing equality

[1] FALSE

> x = 2 # Assignment , equivalent to x <- 2

> x

[1] 2

While on the topic of greater than and less than, one interesting numerical object
in R is Inf. Inf behaves much as the symbol ∞ does in comparisons, as well as
arithmetic operations:

> 1 > Inf

[1] FALSE

> 10^100 > Inf

[1] FALSE

> Inf + Inf

[1] Inf

> Inf - Inf # Result is NaN (Not a Number)

[1] NaN

> 1 + Inf

[1] Inf

> 0 > -Inf

[1] TRUE

> 10 / Inf

[1] 0

Let’s continue our discussion of the relational operators. When applied to vectors,
these operators produce element by element comparisons. For example:

> x <- c(1, 2)

> y <- c(0, 10)

> x > y

[1] TRUE FALSE

Here x[1] is compared against y[1] and x[2] is compared against y[2].

Often, we want to compare a whole vector against a single value. For example, let’s
create a vector x and then ask which elements are greater than 1:
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> x <- c(1, 4, 5, 9, 0)

> x > 1

[1] FALSE TRUE TRUE TRUE FALSE

12.2.2 Boolean Operators

Relational operators can be combined with the Boolean operators AND and OR. To
understand these operators, consider two statements P and Q, such as “2 is greater
than 3,” or “I live on Mars”. Given statements P and Q, we can also consider the
statements P AND Q and P OR Q. The statement P AND Q is true if both P and Q are
true, and false otherwise. The statement P OR Q is false if both P and Q are false, and
true otherwise.

In R, the operators AND and OR are represented by the symbols & and |respectively:

> 1 < 2 & 2 < 3 # AND: Both true , so true

[1] TRUE

> 1 < 2 & 2 < 1 # AND: One false , so false

[1] FALSE

> 1 < 2 | 2 < 1 # OR: One true , so true

[1] TRUE

> 1 < 2 | 2 < 3 # OR: Both true , so true

[1] TRUE

Try experimenting with different combinations.

The operators AND and OR can also be applied to vectors. As usual, the action is
performed element by element:

> x <- c(1, 4, 5, 9, 0)

> x >= 5 & x <= 7 # All x in the interval [5, 7]

[1] FALSE FALSE TRUE FALSE FALSE

> x <= 1 | x > 5

[1] TRUE FALSE FALSE TRUE TRUE

12.2.3 Boolean Arithmetic

As we saw earlier, the values TRUE and FALSE are primitive data types in R, of class
logical:
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> mode(TRUE)

[1] "logical"

One important property of logical values is that they can be used in algebraic expres-
sions, where TRUE evaluates to one and FALSE evaluates to zero:

> FALSE + TRUE

[1] 1

> FALSE * TRUE

[1] 0

> sum(c(TRUE , TRUE , FALSE))

[1] 2

This is very handy. For example, if we want to know how many elements of a
numerical vector y exceed 3, we can use the command

> sum(y > 3)

If we want to know the fraction of elements of y that exceed 3, we can use

> mean(y > 3)

Can you see how this works? Make sure that it’s clear in your mind.

12.2.4 Conditional Extraction

One important fact regarding logical values is that vectors can be indexed by logical
vectors. For example,

> y <- seq(2, 4, length =5)

> y

[1] 2.0 2.5 3.0 3.5 4.0

> index <- c(TRUE , FALSE , FALSE , FALSE , TRUE)

> y[index] # Extract first and last element of y

[1] 2 4

This feature of vector indexing allows us to perform conditional extraction on vectors
with very simple syntax. For example, if y is any vector, then

> y[y > 3]
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returns all elements of y that exceed 3. This works because the expression inside the
square brackets produces a logical vector, and only the elements of y corresponding
to TRUE are extracted.

Here’s an example of what we can achieve with conditional extraction. Let’s sup-
pose we have a data frame called wages, the first column of which records the sex of
the individual, and the second of which records his or her salary. The first few lines
of wages are as follows:

sex salary

1 F 11.21

2 F 10.79

3 M 8.92

4 F 10.42

5 M 9.75

6 F 9.90

How can we compute the average wage for females? We can do it in one line, like
so:

> mean(wages$salary[wages$sex=="F"])

[1] 10.03096

Take your time to think through how this works.

12.2.5 If-Then-Else

Next let’s discuss the if-then-else construct. In the simplest case, we can combine
logical expressions with the if statement to determine whether a piece of code
should be executed or not. For example,

> if (2 > 3) print("foo")

prints nothing, while

> if (3 > 2) print("foo")

prints “foo”. Conditionals are mainly used in programs, rather than at the com-
mand line. Listing 18 gives a (completely artificial) example of the full if-then-else
construct, contained in a small program written in a text file. Try reproducing and
then running it, and see what it does.
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Listing 18 If-then-else

password <- readline("Enter your password: ")

if (password == "foobar") {

print("Welcome")

# Do something

} else {

print("Access denied.")

# Do something else

}

Often, the if-then-else syntax can be replaced by the convenient function ifelse. To
illustrate the latter, consider the following:

> ifelse (1 > -1, "foo", "bar") # Returns "foo"

[1] "foo"

> ifelse(-1 > 1, "foo", "bar") # Returns "bar"

[1] "bar"

The first statement inside the brackets is evaluated. If true, the second value is
returned. If false, the third value is returned.

The function ifelse is vectorized. For example, suppose we have a vector of data
on years of schooling, including university:

> ys

[1] 10 12 15 12 16 17 11

We want to create a dummy (i.e., binary) variable in a new vector tertiary that has
value 1 if more than 12 years of schooling has been attained (i.e., tertiary educated)
and zero if not. This can be accomplished as follows:

> tertiary <- ifelse(ys > 12, 1, 0)

> tertiary

[1] 0 0 1 0 1 1 0

12.3 Repetition

The beauty of computers is that they can perform lots of small caculations quickly—
much faster than a human. If a human needs to intervene and give the command for
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each calculation explicitly, this kind of misses the point. What we want to do is pro-
vide a set of instructions at the start, detailing all the calculations in a parsimonious
way. This is done using loops.

12.3.1 For Loops

The most common kind of loop is a for loop. Suppose for example that we want to
sum the integers from 1 to 100. The next piece of code performs this task:

> x <- 0

> for (i in 1:100) {x <- x + i}

> x

[1] 5050

How does this work? First x is set to zero. Next, i is stepped through each element of
the vector 1:100, and the calculation x <- x + i is performed at each step. Another
way to get R to do this would be to write it all out in full:

> x <- 0

> i <- 1

> x <- x + i

> i <- 2

> x <- x + i

. . . # Many lines omitted

> i <- 100

> x <- x + i

You can see that would be more than a little tedious.

The previous example loop is just for illustration. As a matter of fact, you’ve already
learned a simpler way of performing the same calculation:

> sum (1:100)

[1] 5050

In R, the latter is more efficient than the for loop. We’ll talk about why that’s the
case in §12.5.1.

Let’s look at another example of a for loop. Suppose we want to simulate flipping
a coin 1,000 times, and count the number of heads we get in the process. Listing 19
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shows how we can do this using a loop. Since the program is a bit longer, it’s been
written in a text file. This is why we need the explicit print call, to get the value of
num.heads sent to the screen.

How does it work? The variable i is stepped through each element of the vector
1:1000, and the commands inside the curly brackets are performed at each step.
The coin flip is simulated by drawing a uniform random number between zero and
one. If the number is less than 1/2, the outcome is regarded as heads.

Listing 19 A for loop

num.heads <- 0

for (i in 1:1000) {

b <- runif (1)

if (b < 0.5) num.heads <- num.heads + 1

}

print(num.heads)

Once again, there’s an easier way to do this in R. For example,

> sum(runif (1000) < 0.5)

will also do the job. (Can you see how it works?) So will

> rbinom(1, size =1000, prob =0.5)

If you’re not sure about this last one, you need to read up on the binomial distribu-
tion.

For loops are very often used to step through the indices of a vector. For exam-
ple, let’s say that we have a numeric vector with data on firm sizes (in number
of employees) called fsize. We want to create a new vector ftype that replaces
these numbers with the labels S, M, and L (small, medium and large), depending on
whether the number of employees is in [0, 500), [500, 1000] or [1000, ∞). This can be
accomplished as in listing 20.

Once again, there are special functions in R that can be used to avoid this loop (see
the function cut, for example).2

2Personally, I often favor explicit loops over specialized R functions, because I program in several
languages, and my brain is more comfortable with generic—rather than R-specific—coding styles.
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Listing 20 Another for loop

ftype <- character (0) # Empty character vector

for (i in 1: length(fsize)) {

if (fsize[i] < 500) ftype[i] <- "S"

if (fsize[i] >= 500 & fsize[i] <= 1000) ftype[i] <- "M"

if (fsize[i] > 1000) ftype[i] <- "L"

}

From the previous examples, it might seem that for loops are almost unnecessary
in R, because there are many convenient functions that avoid the need for explicit
looping. Often this is true, especially with short programs performing standard op-
erations. However, for longer programs, explicit loops are pretty much essential.
Suppose for example that we want to regress a variable such as inflation on all pos-
sible subsets of ten different regressors, and see which has the highest adjusted R
squared. There are over 1,000 different possible subsets, and a for loop would be a
natural choice to step through these possibilities.

12.3.2 While Loops

Now let’s briefly look at while loops. Suppose we want to model flipping a coin
until the time the first head appears. In other words, we want to simulate a random
variable that returns the number of the flip resulting in the first head.3 An imple-
mentation is given in listing 21. This loop continues to execute the statements inside
the curly brackets until the condition coin.face == 0 evaluates to FALSE. The logic
of the program is illustrated in figure 12.2.

Now let’s repeat this simulation 1,000 times, and calculate the average value of the
random variable over these repetitions.4 To do this, we put our while loop inside a
for loop, as seen in listing 22. In the listing, the second line creates an empty vector
outcomes. As the for loop progresses, this vector is populated with the result of
each individual simulation. At the end we take the mean and print it.

3This random variable has the so-called negative binomial distribution, which can be simulated
using rnbinom. We’ll produce our own implementation for the sake of the exercise.

4This gives us an estimate of the expected value—more on this later.
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Listing 21 A while loop

flip.num <- 0

coin.face <- 0

while (coin.face == 0) {

flip.num <- flip.num + 1

b <- runif (1)

if (b < 0.5) coin.face <- 1

}

print(flip.num)

Figure 12.2: Flow chart
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Listing 22 Loop inside a loop

num.repetitions <- 1000

outcomes <- rep(0, num.repetitions) # Set up empty vector

for (i in 1:num.repetitions) {

flip.num <- 0

coin.face <- 0

while (coin.face == 0) {

flip.num <- flip.num + 1

b <- runif (1)

if (b < 0.5) coin.face <- 1

}

outcomes[i] <- flip.num # Record result of i-th flip

}

print(mean(outcomes))

12.4 Functions

One aspect of programming that separates good and bad programmers is their use
of functions. As the next step along our journey to becoming good programmers,
let’s spend some time learning the mechanics of building our own functions.

12.4.1 Built-In Functions

R provides numerous functions as part of the R environment, many of which we’ve
already met. For example, sum is a function. It takes a vector as its argument (also
called parameter), and returns the sum of that vector’s elements:

> y <- sum(x) # x is argument , y gets return value

Another built-in function is integrate, which performs numerical integration. For
example,

> integrate(cos , -1, 5)

computes the integral
∫ 5
−1 cos(x)dx numerically by evaluating the function cos at a

number of points between -1 and 5, fitting a polynomial to those points, and return-
ing the integral of this approximating polynomial. On my computer, this function
call returns the output
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-0.1174533 with absolute error < 4.3e-14

(You can verify that this is approximately correct by computing− sin(5) + sin(−1).)
The function integrate takes three arguments: a function representing the inte-
grand, a number representing the lower bound of integration, and a number rep-
resenting the upper bound of integration. This example illustrates the fact that R
functions can take any object as an argument—a vector, a string, a data frame, or
even another function.

Let’s look at a third example: the plot function. Typically, this function receives at
least two arguments, and often many more. Consider, for example, the function call

> plot(a, b, col="blue") # a and b are vectors

The first two arguments are called positional arguments. Their meaning is deter-
mined from their order in the function call. In particular, since a appears before b,
R knows that the elements of a correspond to x-axis values, while those of b corre-
spond to y-axis values. The ordering is clearly important here, because if a and b

differ, then so will the output of the call

> plot(b, a, col="blue") # Order of a and b reversed

The argument "blue" is a named argument, with col being the name of the argu-
ment. Named arguments serve two purposes. First, if there are many arguments,
then distinguishing by names rather than position makes it easier to remember the
roles of the different arguments. Second, named arguments have a default value
attached, which means that if such an argument is not supplied, the function can
revert to a sensible default.

Note that we write col="blue" rather that col<-"blue". When assigning values to
positional arguments, one must use = rather than <-.

12.4.2 User-Defined Functions

The functions sum and plot are examples of built-in functions, which are part of
the R environment. It’s often convenient to define our own user-defined functions.
In fact, when we start writing longer programs, user-defined functions become al-
most indispensable. Further discussion of “why” is left to §12.4.4. For now let’s
concentrate on “how.”

We begin with an example. In §12.4.1 we used the built-in function integrate to
calculate the approximate integral of the cosine function over [−1, 5] via the call
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> integrate(cos , -1, 5)

Now let’s suppose that, for whatever reason, we want to compute
∫ 5
−1 x2 cos(x)dx.

We can do this by creating our own user-defined function that represents y = x2 cos(x)
and then passing it to integrate. The first step is to create the function:

> f <- function(x) return(x * x * cos(x))

Here f is just a name that we’ve chosen arbitrarily, while function(x) indicates that
we are creating a function with one argument, called x. The built in function return

determines what value the function will return when we call it.

Let’s test out our function to check that it works as expected:

> f(3)

[1] -8.909932

> 3 * 3 * cos(3)

[1] -8.909932

In the first line we are calling our function, using the function name followed by the
argument in brackets. The return value is the right one, as we confirmed in the third
and fourth line.

Simple R functions like the one we have just defined are much like the mathematical
notion of a function. For example, just as y = x2 cos(x) and y = z2 cos(z) describe
exactly the same functional relationship, the variable name x can be any name here.
For example,

> f <- function(z) return(z * z * cos(z))

creates the same function as did the previous function definition.

Anyway, we are now ready to perform the integration, passing f as the first argu-
ment to integrate:

> integrate(f, -1, 5)

-18.97950 with absolute error < 2.5e-13

Now let’s create some more complicated functions. In doing so, we can have as
many arguments as we like. For example, the code

> f <- function () print("foo")

> f()

[1] "foo"
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creates and calls a function with no arguments, and no specified return value.5 For
an example with two arguments, consider

> g <- function(x, y) return(x^2 + 2 * x * y + y^2)

> g(2, 3)

[1] 25

We can also create functions with named arguments:

> h <- function(x, intercept =0) return(intercept + 2 * x)

Here the statement intercept=0 in the definition of the function h indicates that
intercept is a named argument with default value 0. If the function is called with-
out specifying a value for intercept, the default value will be used:

> h(1)

[1] 2

> h(1, intercept =3)

[1] 5

Note that, although functions can have many arguments, they always have just one
return value (i.e., they always return a single object). If you want to send back
multiple pieces of data from your user-defined function, then bundle that data into
a vector or a list.

Many functions are larger than the ones we’ve described, with each call involving
a sequence of commands. To create such a function, we enclose the commands in
curly brackets. For example, the function in listing 23 packages the simulation in
listing 21 in a more convenient form. Notice the curly brackets in the first and last
line, which indicate the start and end of the function body respectively. Commands
inside these brackets are executed at each function call.

The function in listing 23 has an argument q, that represents the probability of heads
for our (biased) coin. The function returns the number of flips it took to obtain the
first heads. Here’s how the function is called:

> f(.01)

[1] 408

> f(.9)

[1] 1

Why did calling f with a small number return a big number?
5Actually, f returns the string "foo", even though we did not specify a return value.
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Listing 23 A longer function

f <- function(q) { # q = the probability of heads

flip.num <- 0

coin.face <- 0

while (coin.face == 0) {

flip.num <- flip.num + 1

b <- runif (1)

if (b < q) coin.face <- 1 # with prob q

}

return(flip.num)

}

12.4.3 Variable Scope

One technical issue about functions needs to be mentioned: Variables defined inside
a function are local variables. For example, consider the following code:

> x <- 1

> f <- function () {x <- 2; print(x)}

> f()

[1] 2

> x

[1] 1

You might find it surprising to see that even after the function call f, which involved
binding x to 2, when we query the value of x at the end we find it is still bound to 1.

Here’s how it works: The first assignment x <- 1 binds the name x to 1. This variable
has what is called global scope, because it is created outside of any function. The
next assignment x <- 2 occurs inside the body of the function f. This variable has
local scope. When we execute the function call f, the local variable x is created
in a separate environment specific to that function call, and bound to the value 2.
Any use of the name x inside that environment is resolved by first looking for the
variable name inside this environment, and, if it is not found, then looking in the
global environment. In this case, the name x is found in the local environment, and
the local value 2 is printed.

Once execution of the function call finishes, the local environment created for that
function call is destroyed, and the local x is lost. Execution returns to the global
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environment. Now, when we query the value of x, R looks for this variable name in
the global environment. In this case, the value returned is 1.

Almost all programming languages differentiate between local and global variables.
The reason is data encapsulation: If you call some function in R that implements a
complex operation, that function will likely declare lots of variables that you have
no prior knowledge of. It would not be a happy situation in those variable names
conflicted with the variable names that you are using in your global environment.

12.4.4 Why Functions?

The single most important reason to use functions is that they break programs down
into smaller logical components. Each of these logical components can be designed
individually, considering only the task it must perform. This process of reducing
programs to functions fits our brains well because it corresponds to the way that
solve complex problems in our heads: By breaking them down into smaller pieces.

Related to this point is the fact that, because they are used to solve specific tasks,
functions encourage code reuse. For example, suppose for some reason that R had
no integrate function for numerical integration, and everyone had to write their
own. This would involve an enormous duplication of effort, since numerical in-
tegration is common to many statistical problems. Moreover, if there’s just one
implementation that everyone uses, more time can be spent making that one im-
plementation as good as possible.

12.5 General Programming Tips

Let’s finish up our introduction to the R language by covering some general pointers
for writing programs in R (and other related languages).

12.5.1 Efficiency

If you persist with statistics and econometrics, sooner or later you will bump up
against the limits of what your computer can do. Computers may be getting faster,
but data sets are also getting larger, and the programming problems tackled by
econometricians are becoming increasingly complex. Throwing money at these
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problems by buying new hardware often makes little difference. If you are faced
with such a problem, then you will almost always need to look at the efficiency of
your code.

In this course we won’t be dealing with huge data sets or enormous computational
problems. However, it’s worth understanding the basics of how interpreted lan-
guages like R work, in order that code can be structured appropriately.

All standard computer programs must be converted into machine code before they
can be executed by the CPU. In a compiled language such as C, Fortran or Java, this
is done in one pass of the entire program, prior to execution by the user. On the other
hand, in an interpreted language such as MATLAB or R, individual commands are
converted to machine code on the fly.

Once off compilation prior to execution is efficient for two reasons. First, the com-
piler is able to see the program as a whole, and optimize the machine code accord-
ingly. Second, interpreted languages must pay the overhead of continually calling
the machine code compiler, whereas compiled languages like C need do this only
once. As a result, a language like C can be hundreds of times faster than R in certain
operations.

Why don’t we all just program in C then, if it’s so much faster? Go ahead and try,
and you will soon find out: Programming statistics in C is a painful experience. R
may not be optimized for computers, but it is optimized for humans, and human
time is far more valuable than computer time.

In fact, R is written mainly in C. You can think of R as a friendly interface to C, suit-
able for statistical calculations. The benefit is that most of the necessary C routines
have been coded up for you, and all you have to do to use them is type in intuitive
commands at the prompt. The cost is that you lose low-level control relative to the
alternative option of hand-coding C yourself.

Even if, like most people, you decide to write statistical procedures in R rather than
hand-code them in C, you can still learn from the preceding discussion. In par-
ticular, we can learn that to program R efficiently, we need to pack big batches of
operations into individual commands. This allows R to pass the whole operation
out to optimized machine code, pre-compiled from purpose-built C routines.

To illustrate these ideas, suppose we write our own naive function to obtain the
square of all elements in a vector x, as in listing 24. Let’s compare it against the
natural, vectorized operation in R:
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Listing 24 A slow loop

f <- function(x) {

y <- numeric(length(x))

for (i in 1: length(x)) {

y[i] <- x[i]^2

}

return(y)

}

> n <- 10^6

> x <- rnorm(n)

> system.time(x^2)

user system elapsed

0.024 0.004 0.046

> system.time(f(x))

user system elapsed

3.412 0.012 3.423

We see that our function is over 100 times slower, because R blindly steps through
the instructions in the for loop, translating into machine code as it goes. On the
other hand, the vectorized method allows R to see the problem as a whole, and pass
it to the compiler in an optimal way.

As a rule of thumb, vectorized calculations are far more efficient than explicit loops.
When R calculations can be vectorized, the performance of R is often quite similar to
that of C, Fortran or Java. When operations are not vectorized, it can be far slower.

12.5.2 Clarity and Debugging

Having talked about efficiency, it’s now very important to note that very little of
your code needs to be optimized. Often, 99% of your CPU time will be used by a tiny
subset of the code that you write. Only this code needs to be optimized, and only if
excessive run-time of the program justifies the extra work. Once you’ve spent a few
days debugging your programs, it will become very clear to you that, for the vast
majority of your code, clarity is the priority.

Clarity is crucial, since writing and reading programs is not an easy business for
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human beings. That said, there are some things you can do to make it easier on
yourself and others who read your programs. One is to add comments to your
programs. (A comment is a # symbol, followed by some text.) The text can be
anything, but the idea is to make a useful comment on your code. Adding comments
is helpful to others who read your code, and to you when you come back to your
code after several weeks, months or years.

Another useful technique to improve the clarity of your code is to use indentation
(i.e., whitespace at the start of a line of code). For example, the indentation in list-
ings 22 and 23 helps to separate different logical parts of the program for the reader.
(Like comments, this is irrelevant to the R interpreter: Whitespace is ignored.)

Despite your best efforts at clarity, however, you will still find that a lot of your
programming time is spend hunting down bugs. Errors come in two main classes:
syntax errors, which are flaws in the syntax of your instructions, and cause R to
issue an error message. The other kinds of errors are semantic errors, which are
logical mistakes that cause your program to operate incorrectly. These can be very
difficult to track down, because you don’t have the benefit of an error message.

Debugging is a bit of an art, and I won’t say much about it, apart from suggesting
that, should you have a bug in one of your programs, a good first step is to fill the
program with calls to cat such as

cat("x =", x, "and y =", y, "\n")

so that you can keep track of your variables during execution. Although this tech-
nique for tracking your variables is not very sophisticated, it can be extremely help-
ful.

12.6 More Statistics

[Roadmap]

12.6.1 Distributions in R

R has handy functions for accessing all the common distributions. These functions
have the form

lettername
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where “name” is one of the named distributions in R, such as

norm (normal), lnorm (log normal), unif (uniform), etc.

and “letter” is one of p , d, q or r. The meanings of the letters are

p cumulative distribution function
d density function
q quantile function
r generates random variables

Here are a couple of examples:

> pnorm(2, mean=.1, sd=2) # F(2), cdf of N(.1, 4)

> qcauchy (1/2) # median of cauchy distribution

> runif (100, 2, 4) # 100 uniform r.v.s on [2, 4]

See the documentation for further details on these functions.

With respect to random number generation, you should be aware that “random”
numbers generated by a computer are not truly random. In fact they are not random
at all—they are generated in a purely deterministic way according to specified rules.
By clever design of these rules, it is possible to generate deterministic sequences the
statistical properties of which resemble independent draws from common distribu-
tions. These sequences are called pseudo random numbers.

Pseudo random numbers follow well defined patterns determined by initial con-
ditions. By default, these initial conditions come from the system clock and are
different each time you call on the random number generator. This is a good thing
if you want new draws each time. However, sometimes it’s helpful to set the initial
conditions, such as when you run a simulation experiment, and you want others to
be able to reproduce your results.

The way to do this is via the function set.seed, which sets the initial conditions
(seed) for the random number generator. Here’s an example of usage:

> set.seed (123)

> runif (5) # First draw

[1] 0.2875775 0.7883051 0.4089769 0.8830174 0.9404673

> runif (5) # Draw again , without resetting seed

[1] 0.0455565 0.5281055 0.8924190 0.5514350 0.4566147

> set.seed (123)

> runif (5) # Back to start again

[1] 0.2875775 0.7883051 0.4089769 0.8830174 0.9404673
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12.6.2 Working with Vectors

Vectors in R are rather similar to the abstract mathematical notion of a vector we’ve
just discussed. In particular, they have no notion of being either row vectors or
column vectors. This can be observed by displaying the dim attribute associated
with a given vector via the function dim. Here’s an example:

> x <- rnorm (20) # Create an arbitrary vector x in R

> dim(x) # By default , x is a flat vector

NULL

If we wish to, we can alter the dim attribute to make x a column or row vector.

> dim(x) <- c(20, 1) # Make x a column vector

> dim(x)

[1] 20 1

This is useful for performing matrix multiplication, an operation that distinguishes
between row and column vectors.

As we saw in §11.2.4, scalar multiplication and vector addition are performed in a
natural way:

> x <- 1:4 # Vector

> y <- 5:8 # Vector

> a <- 1 # Scalar

> b <- .5 # Scalar

> a * x # Scalar multiplication

> x + y # Vector addition

> a * x + b * y # Both together

12.6.3 Working with Matrices

Let’s look at how to work with matrices in R. Most often matrices are read in from
data files, or created from other computations. We can also create them from scratch
if we need to. Here, we create the matrices A and B defined on page 69:

> A <- matrix(c(10, 20, 30, 40, 50, 60), nrow=3, ncol =2)

> A

[,1] [,2]
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[1,] 10 40

[2,] 20 50

[3,] 30 60

> B <- matrix(c(1, 2, 3, 4, 5, 6), nrow=2, ncol =3)

> B

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Alternatively, we can create B in two steps:

> B <- c(1, 2, 3, 4, 5, 6)

> class(B) # B is a flat vector with no dimension

[1] "numeric"

> dim(B) <- c(2, 3) # Set the dimension attribute

> B

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

> class(B) # Now B is a matrix

[1] "matrix"

Finally, here’s a third way that I use often:

> B <- matrix(nrow=2, ncol =3)

> B

[,1] [,2] [,3]

[1,] NA NA NA

[2,] NA NA NA

> B[1,] <- c(1, 3, 5)

> B[2,] <- c(2, 4, 6)

> B

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Internally, matrices in R are closely related to data frames. In particular, we can
access elements of the matrices using square brackets followed by row and column
numbers:
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> A[3, 2] # Third row , second column

[1] 60

> A[3,] # Third row , all columns

[1] 30 60

> A[, 2] # All rows , second column

[1] 40 50 60

A and B are not conformable for addition, but A′ and B are. To take the transpose
of A we use the transpose function t:

> t(A)

[,1] [,2] [,3]

[1,] 10 20 30

[2,] 40 50 60

Addition is now straightforward:

> t(A) + B

[,1] [,2] [,3]

[1,] 11 23 35

[2,] 42 54 66

Notice that the multiplication symbol * gives element by element multiplication, as
follows

> t(A) * B

[,1] [,2] [,3]

[1,] 10 60 150

[2,] 80 200 360

This is natural, because it’s consistent with the algebraic operations on vectors we
saw earlier. Matrix multiplication is different, and uses the symbol combination %*%:

> A %*% B

[,1] [,2] [,3]

[1,] 90 190 290

[2,] 120 260 400

[3,] 150 330 510

As we learned above, the product AB is formed by taking as it’s i, j-th element the
inner product of the i-th row of A and the j-th column of B. For example:
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> A[2,] %*% B[,3]

[,1]

[1,] 400

We can also check the claim in fact 2.3.5 that (AB)′ = B′A′:

> t(A %*% B)

[,1] [,2] [,3]

[1,] 90 120 150

[2,] 190 260 330

[3,] 290 400 510

> t(B) %*% t(A)

[,1] [,2] [,3]

[1,] 90 120 150

[2,] 190 260 330

[3,] 290 400 510

Let’s have a look at solving linear systems of equations. Suppose now that A is the
matrix

> A

[,1] [,2] [,3]

[1,] 58 25 3

[2,] 43 97 90

[3,] 18 32 80

and b is the column vector

> b

[,1]

[1,] 1

[2,] 2

[3,] 3

We are interesting in solving the system of equations Ax = b. According to fact 2.3.3,
a unique solution will exist provided that A has nonzero determinant (and is there-
fore of full rank). Let’s check this:

> det(A)

[1] 236430

The inverse of A can be calculated as follows:
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> Ainv <- solve(A)

> Ainv

[,1] [,2] [,3]

[1,] 0.020640359 -0.008053124 0.00828575

[2,] -0.007697839 0.019396862 -0.02153280

[3,] -0.001564945 -0.005946792 0.01924883

In view of (2.3), we can solve for x as A−1b:

> x <- Ainv %*% b

> x

[,1]

[1,] 0.02939136

[2,] -0.03350252

[3,] 0.04428795

While this is valid in theory, it turns out that there are more efficient ways to do this
numerically. As a rule, computing inverses of matrices directly is relatively unstable
numerically, in the sense that round off errors have large effects. Other techniques
are available that mitigate this problem. In R, the preferred method is to use the
formula solve(A, b):

> solve(A, b)

[,1]

[1,] 0.02939136

[2,] -0.03350252

[3,] 0.04428795

In this case we can see that there was no difference in the results produced by the
two techniques, but for large matrices the latter method is significantly more accu-
rate and computationally efficient.

Let’s conclude this section with a few tips for working with matrices and vectors.
First, suppose that we want to use a vector in a matrix operation such as matrix
multiplication. Since a vector in R has no dimension attribute, how will R know
whether to treat it as a column vector or a row vector? (Clearly the result will de-
pend on which choice is made.) The answer is that R will make an educated guess,
depending on which of the two choices is conformable. The next piece of code illus-
trates:

> A <- matrix(c(1, 2, 3, 4), nrow =2)
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> A

[,1] [,2]

[1,] 1 3

[2,] 2 4

> x <- c(5, 6)

> dim(x) # x is a flat vector , with no dimension

NULL

> A %*% x

[,1]

[1,] 23

[2,] 34

> x %*% A

[,1] [,2]

[1,] 17 39

In the first case x is treated as a column vector, while in the second it is treated as a
row vector.

The case x %*% x is ambiguous, and R always gives the inner product.

Sometimes we need to combine matrices or vectors. Here’s an example that forms a
matrix by stacking two vectors row-wise and then column-wise.

> a <- c(1, 2, 3)

> b <- c(4, 5, 6)

> cbind(a, b)

a b

[1,] 1 4

[2,] 2 5

[3,] 3 6

> rbind(a, b)

[,1] [,2] [,3]

a 1 2 3

b 4 5 6

The function diag provides simple way to extract the diagonal elements of a matrix:

> A

[,1] [,2]

[1,] 1 3

[2,] 2 4
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> diag(A)

[1] 1 4

(The trace can now be obtained by summing.) Somewhat confusingly, the same
function is also used to create diagonal matrices:

> diag (3)

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

Last but not least, we often need to create matrices of zeros or ones. Here’s how:

> matrix(1, 3, 2)

[,1] [,2]

[1,] 1 1

[2,] 1 1

[3,] 1 1

> matrix(0, 4, 4)

[,1] [,2] [,3] [,4]

[1,] 0 0 0 0

[2,] 0 0 0 0

[3,] 0 0 0 0

[4,] 0 0 0 0

[internally, matrices are just flat arrays, so some vectorized operations can be per-
formed one-off. example, want to center each row around its mean. write function,
use apply.]

12.6.4 Multiple Regression in R

Let’s look briefly at running multiple regressions in R. The standard method is to
use the function lm, which we discussed in §11.5. Let’s now recall the method, and
compare it with the result of direct calculations according to the theoretical results
we have derived. As a starting point, we generate some synthetic data:

> set.seed (1234)

> N <- 500
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> beta <- c(1, 1, 1)

> X <- cbind(rep(1, N), runif(N), runif(N))

> y <- X %*% beta + rnorm(N)

The seed for the random number generator has been set so that the same pseudo-
random numbers are produced each time the program is run. The matrix X consists
of a vector of ones as the first column, and then two columns of observations on
non-constant regressors. Hence, K = 3. The coefficient vector β has been set to
(1, 1, 1) for simplicity.

We can run an OLS regression in R as follows.

> results <- lm(y ~ 0 + X)

In the call to lm, the term 0 indicates that a constant term should not be added—in
this case, because we already set up X to have a constant vector as the first column.

As a first step, let’s compare the estimate of the coefficient vector produced by lm to
the one we get when using the theoretical formula directly:

> results$coefficients

X1 X2 X3

0.9662670 0.9532119 1.0045879

> solve(t(X) %*% X) %*% t(X) %*% y

[,1]

[1,] 0.9662670

[2,] 0.9532119

[3,] 1.0045879

Here, exactly the same results are produced. However, you should be aware that the
direct method is less stable numerically. Numerical error will be zero or negligible in
mosts settings, but may be significant when data sets are large and multicollinear-
ity is present in the data. For a discussion of multicollinearity, see §7.3.5. For an
illustration of this numerical instability, see exercise 6.4.20.

Let’s also check our theoretical methods for computing ŷ and û. Since these vectors
are too large to print out and compare, we’ll look instead at the squared norms of
the vectors, which correspond to the ESS and SSR respectively:

> yhat <- results$fitted.values

> uhat <- results$residuals

> P <- X %*% solve(t(X) %*% X) %*% t(X)
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> M <- diag(N) - P

> sum(yhat * yhat) # Fitted values calculated by lm()

[1] 2002.222

> sum((P %*% y) * (P %*% y)) # Fitted vals , direct method

[1] 2002.222

> sum(uhat * uhat) # Residuals calculated by lm()

[1] 458.4417

> sum((M %*% y) * (M %*% y)) # Residuals , direct method

[1] 458.4417

Again, the results of lm and the results of our direct calculations from our theoretical
results are in exact agreement.

Regarding the coefficient of determination, the calculation by lm can be viewed us-
ing the summary function:

> summary(results)

# Some lines omitted

Multiple R-squared: 0.8137

According to the theory, this should agree with ‖ŷ‖2/‖y‖2. Let’s check this:

> sum(yhat * yhat) / sum(y * y)

[1] 0.8136919

The results are in agreement.

12.7 Exercises

Ex. 12.7.1. How could you use sum to determine whether a numeric vector x contains
the value 10?

Ex. 12.7.2. Suppose we are processing vector of zeros and ones. The vectors corre-
sponds to the employment histories of individuals. In a given vector, 1 means that
the individual was employed at the associated point in time, while 0 means unem-
ployed. Write a function that takes such a vector (of arbitrary length) and compute
the longest (consecutive) period of employment.

[new exercise: computing a Lorenz curve from a data set on the web. and maybe,
computing and plotting a set of Lorenz curves from a collection of data sets, using
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a loop. make this a computer lab as well? to replace computer lab on chaotic dy-
namics? Lorenz curves can be calculated with for loops, or using built in piecewise
linear function approximation.]

[add more exercises!]

JOHN STACHURSKI January 10, 2014



Chapter 13

Appendix C: Analysis

13.1 Sets and Functions

In the course we often refer to the real numbers. This set is denoted by R, and we
understand it to contain “all of the numbers.” R can be visualized as the “continu-
ous” real line:

0

It contains both the rational and the irrational numbers.

What’s “real” about the real numbers? Well, “real” is in contrast to “imaginary,”
where the latter refers to the set of imaginary numbers. Actually, the imaginary
numbers are no more imaginary (or less real) than any other kind of numbers, but
we don’t need to talk any more about this.

R is an example of a set. A set is a collection of objects viewed as a whole. (In this
case the objects are numbers.) Other examples of sets are the set of all rectangles in
the plane, or the set of all monkeys in Japan.

If A is a set, then the statement x ∈ A means that x is contained in (alternatively, is
an element of) A. If B is another set, then A ⊂ B means that any element of A is also
an element of B, and we say that A is a subset of B. The statement A = B means
that A and B contain the same elements (each element of A is an element of B and
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S

A B

Figure 13.1: Sets A and B in S

vice versa). For example, if I is the irrational numbers,1 then I ⊂ R. Also, 0 ∈ R,
π ∈ R, −3 ∈ R, e ∈ R, and so on.

Commonly used subsets of R include the intervals. For arbitrary a and b in R, the
open inverval (a, b) is defined as

(a, b) := {x ∈ R : a < x < b}

while the closed inverval [a, b] is defined as

[a, b] := {x ∈ R : a ≤ x ≤ b}

We also use half open intervals such as [a, b) := {x ∈ R : a ≤ x < b}, half lines such
as (−∞, b) = {x ∈ R : x < b}, and so on.

Let S be a set and let A and B be two subsets of S, as illustrated in figure 13.1. The
union of A and B is the set of elements of S that are in A or B or both:

A ∪ B := {x ∈ S : x ∈ A or x ∈ B}

Here and below, “or” is used in the mathematical sense. It means “and/or”. The
intersection of A and B is the set of all elements of S that are in both A and B:

A ∩ B := {x ∈ S : x ∈ A and x ∈ B}

The set A \ B is all points in A that are not points in B:

A \ B := {x ∈ S : x ∈ A and x /∈ B}

The complement of A is the set of elements of S that are not contained in A:

Ac := S \ A :=: {x ∈ S : x /∈ A}
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Figure 13.2: Unions, intersection and complements

Here x /∈ A means that x is not an element of A. Figure 13.2 illustrate these defini-
tions.

For example, since R consists of the irrationals I and the rationals Q, we have

Q ⊂ R, I ⊂ R, Q∪ I = R, Qc = I, etc.

Also,
N := {1, 2, 3, . . .} ⊂ Q ⊂ R

The empty set is, unsurprisingly, the set containing no elements. It is denoted by ∅.
If the intersection of A and B equals ∅, then A and B are said to be disjoint.

The next fact lists some well known rules for set theoretic operations.

Fact 13.1.1. Let A and B be subsets of S. The following statements are true:

1. A ∪ B = B ∪ A and A ∩ B = B ∩ A.

2. (A ∪ B)c = Bc ∩ Ac and (A ∩ B)c = Bc ∪ Ac.

1The irrationals are those numbers such as π and
√

2 that cannot be expressed as fractions of
whole numbers.
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3. A \ B = A ∩ Bc.

4. (Ac)c = A.

13.1.1 Functions

Let A and B be sets. A function f from A to B is a rule that associates to each element
a of A one and only one element of B. That element of B is usually called the image
of a under f , and written f (a). If we write f : A→ B, this means that f is a function
from A to B.

For an example of a function, think of the hands on an old school clock. Let’s say we
know it’s the morning. Each position of the two hands is associated with one and
only one time in the morning. If we don’t know it’s morning, however, one position
of the hands is associated with two different times, am and pm. The relationship is
no longer functional.

Figure 13.3 is instructive. Top right is not a function because the middle point on
the left-hand side is associated with two different points (images). Bottom right is
not a function because the top point on the left-hand side is not associated with any
image. From the definition, this is not allowed.

13.1.2 Convergence and Continuity

Let {xn}∞
n=1 be a sequence of real numbers. (For each n = 1, 2, . . . we have a corre-

sponding xn ∈ R.) We say that xn converges to 0 if, given any neighborhood of 0,
the sequence points are eventually in that neighborhood. More formally (we won’t
use the formal definition, so feel free to skip this), given any ε > 0, there exists an
N ∈ N such that |xn| < ε whenever n ≥ N. Symbolically, xn → 0.

Now let {xn}∞
n=1 be a sequence of vectors inRN. We say that xn converges to x ∈ R

if ‖xn − x‖ → 0. Symbolically, xn → x. This is the fundamental notion of conver-
gence in RN. Whole branches of mathematics are built on this idea.

Let A ⊂ RN and B ⊂ RM. A function f : A → B is called continuous at x if
f (xn) → f (x) whenever xn → x, and continuous if it is continuous at x for all
x ∈ A. Figure 13.4 illustrates. The notion of continuity is also massively important
to mathematical analysis. However, we won’t be doing any formal proofs using the
definition—we just state it for the record.
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Figure 13.3: Function and non-functions

Figure 13.4: Continuity
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Figure 13.5: Monotone transforms preserve maximizers

13.2 Optimization

Monotone increasing transformations of functions do not affect maximizers:

Let A be any set, and let f : A → R. That is, f is a function such that f (a) is a
number for each a ∈ A. A maximizer of f on A is a point a∗ ∈ A such that

f (a∗) ≥ f (a) for all a ∈ A

Now let m be a monotone increasing function, in the sense that if x ≤ x′, then
m(x) ≤ m(x′), and let g be the function defined by g(a) = m( f (a)). Our claim is
this:

Any maximizer of f on A is also a maximizer of g on A.

It’s easy to see why this is the case. Let a ∈ A. Since a∗ is a maximizer of f , it must
be the case that f (a) ≤ f (a∗). Since m is monotone increasing, this implies that
m( f (a)) ≤ m( f (a∗)). Given that a was chosen arbitrarily, we have now shown that

g(a∗) ≥ g(a) for all a ∈ A

In other words, a∗ is a maximizer of g on A.

Before finishing this topic, let’s recall the notions of supremum and infimum. To
illustrate, consider the function f : (0, 1) → (0, 1) defined by f (x) = x. It should be
clear that f has no maximiser on (0, 1): given any a∗ ∈ (0, 1), we can always choose
another point a∗∗ ∈ (0, 1) such that a∗∗ = f (a∗∗) > f (a∗) = a∗. No maximizer exists
and the optimization problem maxx∈(0,1) f (x) has no solution.
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To get around this kind of problem, we often the notion of supremum instead. If A
is a set, then the supremum s := sup A is the unique number s such that a ≤ s for
every a ∈ A, and, moreover, there exists a sequence {xn} ⊂ A such that xn → s.
For example, 1 is the supremum of both (0, 1) and [0, 1]. The infimum i := inf A is
the unique number i such that a ≥ i for every a ∈ A, and, moreover, there exists a
sequence {xn} ⊂ A such that xn → i. For example, 0 is the supremum of both (0, 1)
and [0, 1].

One can show that the supremum and infimum of any bounded set A exist, and any
set A when the values −∞ and ∞ are admitted as a possible infima and supremum.

Returning to our original example with f (x) = x, while maxx∈(0,1) f (x) is not well
defined, supx∈(0,1) f (x) := sup{ f (x) : x ∈ (0, 1)} = sup(0, 1) = 1.

13.3 Logical Arguments

To be written:

- Role of counterexamples. Many logical statements are of the form “if it’s an A,
then it’s a B”. (Examples.) The statement may be correct or incorrect. To show it’s
correct, we take an arbitrary A, and prove that it’s a B. To show it’s false, we provide
a counterexample. (Give examples of this process.)

- Contrapositive. Simple example with Venn diagram. Explain how it’s useful with
an example from the text. (fact 2.2.4?)

- Proof by induction. Simple examples. Relate to (7.27) and (8.7). Relate to discus-
sion of statistial learning and induction.
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√
N-consistent, 119

Adapted process, 231
Annihilator, 92
Asymptotic variance, 119
Asymptotically normal, 119
Asymptotically unbiased, 119

Basis, 65
Basis functions, 180
Bayes’ formula, 286
Bernoulli random variable, 10
Bias, 115
Binary response model, 124
Boolean operators, 332

Cauchy-Schwartz inequality, 52
cdf, 16
Central limit theorem, 36
Chi-squared distribution, 24
Class, 319
Coefficient of determination, 183
Column space, 67
Column vector, 53
Command history, R, 298
Complement, 361
Conditional density, 26
Conditional expectation, 97
Conditional probability, 6
Confidence interval, 156
Consistent, 119
Consistent test, 173

Convergence in distribution, 33, 76
Convergence in mean square, 31
Convergence in probability, 31, 74
Covariance, 28
Critical value, 164
Cumulative distribution function, 16
Current working directory, 323

Data frame, 314
Delta method, 37
Density, 18
Determinant, 68
Diagonal matrix, 53
Dimension, 65
Disjoint sets, 362

ecdf, 134
Empirical cdf, 134
Empirical risk, 140
Empirical risk minimization, 140
Empty set, 362
Ergodicity, 236
ERM, see Empirical risk minimization
Estimator, 114
Expectation, 13
Expectation, vector, 72
Explained sum of squares, 179

F-distribution, 25
Filtration, 231
Floating point number, 311
Formula (in R), 321
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Full rank, 67

Gaussian distribution, 24
Generalization, 108
Generic function, 319
Global stability, 236, 243
Gradient vector, 256

Hessian, 256
Homoskedastic, 197
Hypothesis space, 140

Idempotent, 70
Identity matrix, 54
Independence, of events, 6
Independence, of r.v.s, 26
Indicator function, 10
Induction, 109
Inf, 331
Infimum, 365
Information set, 95, 231
Inner product, 50
Intersection, 361
Inverse matrix, 68
Inverse transform method, 40
Invertible, 68
Irrational numbers, 360

Joint density, 25
Joint distribution, 25

Kullback-Leibler deviation, 148

Law of large numbers, 34
Law of Total Probability, 7
Least squares, 141, 176
Likelihood function, 122
Linear combinations, 59
Linear function, 55
Linear independence, 63

Linear subspace, 61, 97
List, 313
Log likelihood function, 122
Logit, 124
Loss function, 139

Marginal distribution, 25
Markov process, 229
Matrix, 53
Maximizer, 365
Maximum likelihood estimate, 122
Mean squared error, 115
Measurability, 95
Moment, 28
Monotone increasing function, 365
Multicollinearity, 207

Nonnegative definite, 70
Nonparametric class, 126
Norm, 50
Normal distribution, 24
Null hypothesis, 162, 163

Ordinary least squares, 195
Orthogonal projection, 86
Orthogonal projection theorem, 86
Orthogonal vectors, 84
Overdetermined system, 90

Parametric class, 126
Perfect fit, 183
Plug in estimator, 136
Positive definite, 70
Posterior distribution, 287
Power function, 164
Principle of maximum likelihood, 120
Priors, 287
Probit, 124
Projection matrix, 92
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Pythagorean law, 84

R squared, centered, 186
R squared, uncentered, 183
Range, 57
Rank, 67
Rational numbers, 360
Real numbers, 360
Rejection region, 163
Relational operators, 330
Risk function, 139
Row vector, 53

Sample k-th moment, 112
Sample correlation, 113
Sample covariance, 112
Sample mean, 112
Sample mean, vector case, 114
Sample standard deviation, 112
Sample variance, 112
Sampling distribution, 153
Sampling error, 198
Scalar product, 50
Set, 360
Singular matrix, 68
Size of a test, 164
Slutsky’s theorem, 34
Span, 60
Spectral norm, 245
Square matrix, 53
Standard deviation, 28
Standard error, 157, 209
Stationary distribution, 238, 243
Statistic, 112
String, 311
Student’s t-distribution, 24
Subset, 360
Sum of squared residuals, 179
Sum, vectors, 50

Supremum, 365
Symmetric cdf, 17
Symmetric matrix, 53

Test, 163
Test statistic, 164
Text editor, 329
Text file, 328
Tikhonov regularization, 278
Total sum of squares, 179
Trace, 70
Transition density, 230
Transpose, 69
Triangle inequality, 52
Type I error, 164
Type II error, 164

Unbiased, 115
Uniform distribution, 24
Union, 361

Variable, programming, 299
Variance, real r.v., 28
Variance-covariance matrix, 73, 114
Vector of fitted values, 178
Vector of residuals, 179
Vector, programming, 301
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