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2 Overview

In a previous lecture we learned about finite Markov chains, a relatively elementary class of
stochastic dynamic models.

The present lecture extends this analysis to continuous (i.e., uncountable) state Markov
chains.

Most stochastic dynamic models studied by economists either fit directly into this class or can
be represented as continuous state Markov chains after minor modifications.

In this lecture, our focus will be on continuous Markov models that

• evolve in discrete time
• are often nonlinear

The fact that we accommodate nonlinear models here is significant, because linear stochastic
models have their own highly developed tool set, as we’ll see later on.

The question that interests us most is: Given a particular stochastic dynamic model, how will
the state of the system evolve over time?

In particular,

• What happens to the distribution of the state variables?
• Is there anything we can say about the “average behavior” of these variables?
• Is there a notion of “steady state” or “long run equilibrium” that’s applicable to the

model?
– If so, how can we compute it?
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Answering these questions will lead us to revisit many of the topics that occupied us in the
finite state case, such as simulation, distribution dynamics, stability, ergodicity, etc.

Note
For some people, the term “Markov chain” always refers to a process with a finite
or discrete state space. We follow the mainstream mathematical literature (e.g.,
[4]) in using the term to refer to any discrete time Markov process.

2.1 Setup

In [1]: using InstantiateFromURL
# optionally add arguments to force installation: instantiate = true,�

↪precompile = true
github_project("QuantEcon/quantecon-notebooks-julia", version = "0.8.0")

In [2]: using LinearAlgebra, Statistics
using KernelDensity, Distributions, Plots, QuantEcon, Random

3 The Density Case

You are probably aware that some distributions can be represented by densities and some
cannot.

(For example, distributions on the real numbers ℝ that put positive probability on individual
points have no density representation)

We are going to start our analysis by looking at Markov chains where the one step transition
probabilities have density representations.

The benefit is that the density case offers a very direct parallel to the finite case in terms of
notation and intuition.

Once we’ve built some intuition we’ll cover the general case.

3.1 Definitions and Basic Properties

In our lecture on finite Markov chains, we studied discrete time Markov chains that evolve on
a finite state space 𝑆.

In this setting, the dynamics of the model are described by a stochastic matrix — a nonnega-
tive square matrix 𝑃 = 𝑃 [𝑖, 𝑗] such that each row 𝑃 [𝑖, ⋅] sums to one.

The interpretation of 𝑃 is that 𝑃 [𝑖, 𝑗] represents the probability of transitioning from state 𝑖
to state 𝑗 in one unit of time.

In symbols,

ℙ{𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖} = 𝑃 [𝑖, 𝑗]

Equivalently,

• 𝑃 can be thought of as a family of distributions 𝑃 [𝑖, ⋅], one for each 𝑖 ∈ 𝑆
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• 𝑃 [𝑖, ⋅] is the distribution of 𝑋𝑡+1 given 𝑋𝑡 = 𝑖
(As you probably recall, when using Julia arrays, 𝑃 [𝑖, ⋅] is expressed as P[i,:])

In this section, we’ll allow 𝑆 to be a subset of ℝ, such as

• ℝ itself
• the positive reals (0, ∞)
• a bounded interval (𝑎, 𝑏)

The family of discrete distributions 𝑃 [𝑖, ⋅] will be replaced by a family of densities 𝑝(𝑥, ⋅), one
for each 𝑥 ∈ 𝑆.

Analogous to the finite state case, 𝑝(𝑥, ⋅) is to be understood as the distribution (density) of
𝑋𝑡+1 given 𝑋𝑡 = 𝑥.

More formally, a stochastic kernel on 𝑆 is a function 𝑝 ∶ 𝑆 × 𝑆 → ℝ with the property that

1. 𝑝(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ 𝑆
2. ∫ 𝑝(𝑥, 𝑦)𝑑𝑦 = 1 for all 𝑥 ∈ 𝑆

(Integrals are over the whole space unless otherwise specified)

For example, let 𝑆 = ℝ and consider the particular stochastic kernel 𝑝𝑤 defined by

𝑝𝑤(𝑥, 𝑦) ∶= 1√
2𝜋 exp {−(𝑦 − 𝑥)2

2 } (1)

What kind of model does 𝑝𝑤 represent?

The answer is, the (normally distributed) random walk

𝑋𝑡+1 = 𝑋𝑡 + 𝜉𝑡+1 where {𝜉𝑡}
IID∼ 𝑁(0, 1) (2)

To see this, let’s find the stochastic kernel 𝑝 corresponding to (2).

Recall that 𝑝(𝑥, ⋅) represents the distribution of 𝑋𝑡+1 given 𝑋𝑡 = 𝑥.

Letting 𝑋𝑡 = 𝑥 in (2) and considering the distribution of 𝑋𝑡+1, we see that 𝑝(𝑥, ⋅) = 𝑁(𝑥, 1).
In other words, 𝑝 is exactly 𝑝𝑤, as defined in (1).

3.2 Connection to Stochastic Difference Equations

In the previous section, we made the connection between stochastic difference equation (2)
and stochastic kernel (1).

In economics and time series analysis we meet stochastic difference equations of all different
shapes and sizes.

It will be useful for us if we have some systematic methods for converting stochastic difference
equations into stochastic kernels.

To this end, consider the generic (scalar) stochastic difference equation given by

𝑋𝑡+1 = 𝜇(𝑋𝑡) + 𝜎(𝑋𝑡) 𝜉𝑡+1 (3)

Here we assume that
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• {𝜉𝑡}
IID∼ 𝜙, where 𝜙 is a given density on ℝ

• 𝜇 and 𝜎 are given functions on 𝑆, with 𝜎(𝑥) > 0 for all 𝑥
Example 1: The random walk (2) is a special case of (3), with 𝜇(𝑥) = 𝑥 and 𝜎(𝑥) = 1.

Example 2: Consider the ARCH model

𝑋𝑡+1 = 𝛼𝑋𝑡 + 𝜎𝑡 𝜉𝑡+1, 𝜎2
𝑡 = 𝛽 + 𝛾𝑋2

𝑡 , 𝛽, 𝛾 > 0

Alternatively, we can write the model as

𝑋𝑡+1 = 𝛼𝑋𝑡 + (𝛽 + 𝛾𝑋2
𝑡 )1/2𝜉𝑡+1 (4)

This is a special case of (3) with 𝜇(𝑥) = 𝛼𝑥 and 𝜎(𝑥) = (𝛽 + 𝛾𝑥2)1/2.

Example 3: With stochastic production and a constant savings rate, the one-sector neoclas-
sical growth model leads to a law of motion for capital per worker such as

𝑘𝑡+1 = 𝑠𝐴𝑡+1𝑓(𝑘𝑡) + (1 − 𝛿)𝑘𝑡 (5)

Here

• 𝑠 is the rate of savings
• 𝐴𝑡+1 is a production shock

– The 𝑡 + 1 subscript indicates that 𝐴𝑡+1 is not visible at time 𝑡
• 𝛿 is a depreciation rate
• 𝑓 ∶ ℝ+ → ℝ+ is a production function satisfying 𝑓(𝑘) > 0 whenever 𝑘 > 0

(The fixed savings rate can be rationalized as the optimal policy for a particular set of tech-
nologies and preferences (see [3], section 3.1.2), although we omit the details here)

Equation (5) is a special case of (3) with 𝜇(𝑥) = (1 − 𝛿)𝑥 and 𝜎(𝑥) = 𝑠𝑓(𝑥).
Now let’s obtain the stochastic kernel corresponding to the generic model (3).

To find it, note first that if 𝑈 is a random variable with density 𝑓𝑈 , and 𝑉 = 𝑎 + 𝑏𝑈 for some
constants 𝑎, 𝑏 with 𝑏 > 0, then the density of 𝑉 is given by

𝑓𝑉 (𝑣) = 1
𝑏 𝑓𝑈 (𝑣 − 𝑎

𝑏 ) (6)

(The proof is below. For a multidimensional version see EDTC, theorem 8.1.3)

Taking (6) as given for the moment, we can obtain the stochastic kernel 𝑝 for (3) by recalling
that 𝑝(𝑥, ⋅) is the conditional density of 𝑋𝑡+1 given 𝑋𝑡 = 𝑥.

In the present case, this is equivalent to stating that 𝑝(𝑥, ⋅) is the density of 𝑌 ∶= 𝜇(𝑥) +
𝜎(𝑥) 𝜉𝑡+1 when 𝜉𝑡+1 ∼ 𝜙.

Hence, by (6),

𝑝(𝑥, 𝑦) = 1
𝜎(𝑥)𝜙 (𝑦 − 𝜇(𝑥)

𝜎(𝑥) ) (7)

For example, the growth model in (5) has stochastic kernel
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𝑝(𝑥, 𝑦) = 1
𝑠𝑓(𝑥)𝜙 (𝑦 − (1 − 𝛿)𝑥

𝑠𝑓(𝑥) ) (8)

where 𝜙 is the density of 𝐴𝑡+1.

(Regarding the state space 𝑆 for this model, a natural choice is (0, ∞) — in which case
𝜎(𝑥) = 𝑠𝑓(𝑥) is strictly positive for all 𝑠 as required)

3.3 Distribution Dynamics

In this section of our lecture on finite Markov chains, we asked the following question: If

1. {𝑋𝑡} is a Markov chain with stochastic matrix 𝑃

2. the distribution of 𝑋𝑡 is known to be 𝜓𝑡

then what is the distribution of 𝑋𝑡+1?

Letting 𝜓𝑡+1 denote the distribution of 𝑋𝑡+1, the answer we gave was that

𝜓𝑡+1[𝑗] = ∑
𝑖∈𝑆

𝑃 [𝑖, 𝑗]𝜓𝑡[𝑖]

This intuitive equality states that the probability of being at 𝑗 tomorrow is the probability of
visiting 𝑖 today and then going on to 𝑗, summed over all possible 𝑖.
In the density case, we just replace the sum with an integral and probability mass functions
with densities, yielding

𝜓𝑡+1(𝑦) = ∫ 𝑝(𝑥, 𝑦)𝜓𝑡(𝑥) 𝑑𝑥, ∀𝑦 ∈ 𝑆 (9)

It is convenient to think of this updating process in terms of an operator.

(An operator is just a function, but the term is usually reserved for a function that sends
functions into functions)

Let 𝒟 be the set of all densities on 𝑆, and let 𝑃 be the operator from 𝒟 to itself that takes
density 𝜓 and sends it into new density 𝜓𝑃 , where the latter is defined by

(𝜓𝑃)(𝑦) = ∫ 𝑝(𝑥, 𝑦)𝜓(𝑥)𝑑𝑥 (10)

This operator is usually called the Markov operator corresponding to 𝑝

Note
Unlike most operators, we write 𝑃 to the right of its argument, instead of to the
left (i.e., 𝜓𝑃 instead of 𝑃𝜓). This is a common convention, with the intention be-
ing to maintain the parallel with the finite case — see here.
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With this notation, we can write (9) more succinctly as 𝜓𝑡+1(𝑦) = (𝜓𝑡𝑃)(𝑦) for all 𝑦, or, drop-
ping the 𝑦 and letting “=” indicate equality of functions,

𝜓𝑡+1 = 𝜓𝑡𝑃 (11)

Equation (11) tells us that if we specify a distribution for 𝜓0, then the entire sequence of fu-
ture distributions can be obtained by iterating with 𝑃 .

It’s interesting to note that (11) is a deterministic difference equation.

Thus, by converting a stochastic difference equation such as (3) into a stochastic kernel 𝑝 and
hence an operator 𝑃 , we convert a stochastic difference equation into a deterministic one (al-
beit in a much higher dimensional space).

Note
Some people might be aware that discrete Markov chains are in fact a special case
of the continuous Markov chains we have just described. The reason is that proba-
bility mass functions are densities with respect to the counting measure.

3.4 Computation

To learn about the dynamics of a given process, it’s useful to compute and study the se-
quences of densities generated by the model.

One way to do this is to try to implement the iteration described by (10) and (11) using nu-
merical integration.

However, to produce 𝜓𝑃 from 𝜓 via (10), you would need to integrate at every 𝑦, and there is
a continuum of such 𝑦.

Another possibility is to discretize the model, but this introduces errors of unknown size.

A nicer alternative in the present setting is to combine simulation with an elegant estimator
called the look ahead estimator.

Let’s go over the ideas with reference to the growth model discussed above, the dynamics of
which we repeat here for convenience:

𝑘𝑡+1 = 𝑠𝐴𝑡+1𝑓(𝑘𝑡) + (1 − 𝛿)𝑘𝑡 (12)

Our aim is to compute the sequence {𝜓𝑡} associated with this model and fixed initial condi-
tion 𝜓0.

To approximate 𝜓𝑡 by simulation, recall that, by definition, 𝜓𝑡 is the density of 𝑘𝑡 given 𝑘0 ∼
𝜓0.

If we wish to generate observations of this random variable, all we need to do is

1. draw 𝑘0 from the specified initial condition 𝜓0

2. draw the shocks 𝐴1, … , 𝐴𝑡 from their specified density 𝜙

3. compute 𝑘𝑡 iteratively via (12)
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If we repeat this 𝑛 times, we get 𝑛 independent observations 𝑘1
𝑡 , … , 𝑘𝑛

𝑡 .

With these draws in hand, the next step is to generate some kind of representation of their
distribution 𝜓𝑡.

A naive approach would be to use a histogram, or perhaps a smoothed histogram using the
kde function from KernelDensity.jl.

However, in the present setting there is a much better way to do this, based on the look-
ahead estimator.

With this estimator, to construct an estimate of 𝜓𝑡, we actually generate 𝑛 observations of
𝑘𝑡−1, rather than 𝑘𝑡.

Now we take these 𝑛 observations 𝑘1
𝑡−1, … , 𝑘𝑛

𝑡−1 and form the estimate

𝜓𝑛
𝑡 (𝑦) = 1

𝑛
𝑛

∑
𝑖=1

𝑝(𝑘𝑖
𝑡−1, 𝑦) (13)

where 𝑝 is the growth model stochastic kernel in (8).

What is the justification for this slightly surprising estimator?

The idea is that, by the strong law of large numbers,

1
𝑛

𝑛
∑
𝑖=1

𝑝(𝑘𝑖
𝑡−1, 𝑦) → 𝔼𝑝(𝑘𝑖

𝑡−1, 𝑦) = ∫ 𝑝(𝑥, 𝑦)𝜓𝑡−1(𝑥) 𝑑𝑥 = 𝜓𝑡(𝑦)

with probability one as 𝑛 → ∞.

Here the first equality is by the definition of 𝜓𝑡−1, and the second is by (9).

We have just shown that our estimator 𝜓𝑛
𝑡 (𝑦) in (13) converges almost surely to 𝜓𝑡(𝑦), which

is just what we want to compute.

In fact much stronger convergence results are true (see, for example, this paper).

3.5 Implementation

A function which calls an LAE type for estimating densities by this technique can be found in
lae.jl.

This function returns the right-hand side of (13) using

• an object of type LAE that stores the stochastic kernel and the observations
• the value 𝑦 as its second argument

The function is vectorized, in the sense that if psi is such an instance and y is an array, then
the call psi(y) acts elementwise.

(This is the reason that we reshaped X and y inside the type — to make vectorization work)
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3.6 Example

The following code is example of usage for the stochastic growth model described above

In [3]: using Distributions, StatsPlots, Plots, QuantEcon, Random
gr(fmt = :png)
Random.seed!(42) # For deterministic results.

s = 0.2
δ = 0.1
a_σ = 0.4 # A = exp(B) where B ~ N(0, a_σ)
α = 0.4 # We set f(k) = k**α
ψ_0 = Beta(5.0, 5.0) # Initial distribution
ϕ = LogNormal(0.0, a_σ)

function p(x, y)
# Stochastic kernel for the growth model with Cobb-Douglas production.
# Both x and y must be strictly positive.

d = s * x.^α

pdf_arg = clamp.((y .- (1-δ) .* x) ./ d, eps(), Inf)
return pdf.(ϕ, pdf_arg) ./ d

end

n = 10000 # Number of observations at each date t
T = 30 # Compute density of k_t at 1,...,T+1

# Generate matrix s.t. t-th column is n observations of k_t
k = zeros(n, T)
A = rand!(ϕ, zeros(n, T))

# Draw first column from initial distribution
k[:, 1] = rand(ψ_0, n) ./ 2 # divide by 2 to match scale = 0.5 in py version
for t in 1:T-1

k[:, t+1] = s*A[:, t] .* k[:, t].^α + (1-δ) .* k[:, t]
end

# Generate T instances of LAE using this data, one for each date t
laes = [LAE(p, k[:, t]) for t in T:-1:1]

# Plot
ygrid = range(0.01, 4, length = 200)
laes_plot = []
colors = []
for i in 1:T

ψ = laes[i]
push!(laes_plot, lae_est(ψ , ygrid))
push!(colors, RGBA(0, 0, 0, 1 - (i - 1)/T))

end
plot(ygrid, laes_plot, color = reshape(colors, 1, length(colors)), lw = 2,

xlabel = "capital", legend = :none)
t = "Density of k_1 (lighter) to k_T (darker) for T=$T"
plot!(title = t)

Out[3]:
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The figure shows part of the density sequence {𝜓𝑡}, with each density computed via the look
ahead estimator.

Notice that the sequence of densities shown in the figure seems to be converging — more on
this in just a moment.

Another quick comment is that each of these distributions could be interpreted as a cross sec-
tional distribution (recall this discussion).

4 Beyond Densities

Up until now, we have focused exclusively on continuous state Markov chains where all condi-
tional distributions 𝑝(𝑥, ⋅) are densities.

As discussed above, not all distributions can be represented as densities.

If the conditional distribution of 𝑋𝑡+1 given 𝑋𝑡 = 𝑥 cannot be represented as a density for
some 𝑥 ∈ 𝑆, then we need a slightly different theory.

The ultimate option is to switch from densities to probability measures, but not all readers
will be familiar with measure theory.

We can, however, construct a fairly general theory using distribution functions.

4.1 Example and Definitions

To illustrate the issues, recall that Hopenhayn and Rogerson [1] study a model of firm dy-
namics where individual firm productivity follows the exogenous process

𝑋𝑡+1 = 𝑎 + 𝜌𝑋𝑡 + 𝜉𝑡+1, where {𝜉𝑡}
IID∼ 𝑁(0, 𝜎2)
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As is, this fits into the density case we treated above.

However, the authors wanted this process to take values in [0, 1], so they added boundaries at
the end points 0 and 1.

One way to write this is

𝑋𝑡+1 = ℎ(𝑎 + 𝜌𝑋𝑡 + 𝜉𝑡+1) where ℎ(𝑥) ∶= 𝑥 1{0 ≤ 𝑥 ≤ 1} + 1{𝑥 > 1}

If you think about it, you will see that for any given 𝑥 ∈ [0, 1], the conditional distribution of
𝑋𝑡+1 given 𝑋𝑡 = 𝑥 puts positive probability mass on 0 and 1.

Hence it cannot be represented as a density.

What we can do instead is use cumulative distribution functions (cdfs).

To this end, set

𝐺(𝑥, 𝑦) ∶= ℙ{ℎ(𝑎 + 𝜌𝑥 + 𝜉𝑡+1) ≤ 𝑦} (0 ≤ 𝑥, 𝑦 ≤ 1)

This family of cdfs 𝐺(𝑥, ⋅) plays a role analogous to the stochastic kernel in the density case.

The distribution dynamics in (9) are then replaced by

𝐹𝑡+1(𝑦) = ∫ 𝐺(𝑥, 𝑦)𝐹𝑡(𝑑𝑥) (14)

Here 𝐹𝑡 and 𝐹𝑡+1 are cdfs representing the distribution of the current state and next period
state.

The intuition behind (14) is essentially the same as for (9).

4.2 Computation

If you wish to compute these cdfs, you cannot use the look-ahead estimator as before.

Indeed, you should not use any density estimator, since the objects you are estimating/com-
puting are not densities.

One good option is simulation as before, combined with the empirical distribution function.

5 Stability

In our lecture on finite Markov chains we also studied stationarity, stability and ergodicity.

Here we will cover the same topics for the continuous case.

We will, however, treat only the density case (as in this section), where the stochastic kernel
is a family of densities.

The general case is relatively similar — references are given below.
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5.1 Theoretical Results

Analogous to the finite case, given a stochastic kernel 𝑝 and corresponding Markov operator
as defined in (10), a density 𝜓∗ on 𝑆 is called stationary for 𝑃 if it is a fixed point of the op-
erator 𝑃 .

In other words,

𝜓∗(𝑦) = ∫ 𝑝(𝑥, 𝑦)𝜓∗(𝑥) 𝑑𝑥, ∀𝑦 ∈ 𝑆 (15)

As with the finite case, if 𝜓∗ is stationary for 𝑃 , and the distribution of 𝑋0 is 𝜓∗, then, in
view of (11), 𝑋𝑡 will have this same distribution for all 𝑡.
Hence 𝜓∗ is the stochastic equivalent of a steady state.

In the finite case, we learned that at least one stationary distribution exists, although there
may be many.

When the state space is infinite, the situation is more complicated.

Even existence can fail very easily.

For example, the random walk model has no stationary density (see, e.g., EDTC, p. 210).

However, there are well-known conditions under which a stationary density 𝜓∗ exists.

With additional conditions, we can also get a unique stationary density (𝜓 ∈ 𝒟 and 𝜓 =
𝜓𝑃 ⟹ 𝜓 = 𝜓∗), and also global convergence in the sense that

∀ 𝜓 ∈ 𝒟, 𝜓𝑃 𝑡 → 𝜓∗ as 𝑡 → ∞ (16)

This combination of existence, uniqueness and global convergence in the sense of (16) is often
referred to as global stability.

Under very similar conditions, we get ergodicity, which means that

1
𝑛

𝑛
∑
𝑡=1

ℎ(𝑋𝑡) → ∫ ℎ(𝑥)𝜓∗(𝑥)𝑑𝑥 as 𝑛 → ∞ (17)

for any (measurable) function ℎ∶ 𝑆 → ℝ such that the right-hand side is finite.

Note that the convergence in (17) does not depend on the distribution (or value) of 𝑋0.

This is actually very important for simulation — it means we can learn about 𝜓∗ (i.e., ap-
proximate the right hand side of (17) via the left hand side) without requiring any special
knowledge about what to do with 𝑋0.

So what are these conditions we require to get global stability and ergodicity?

In essence, it must be the case that

1. Probability mass does not drift off to the “edges” of the state space

2. Sufficient “mixing” obtains

11

https://lectures.quantecon.org/jl/tools_and_techniques/finite_markov.html#mc-stat-dd
http://johnstachurski.net/edtc.html
https://en.wikipedia.org/wiki/Measurable_function


For one such set of conditions see theorem 8.2.14 of EDTC.

In addition

• [5] contains a classic (but slightly outdated) treatment of these topics.
• From the mathematical literature, [2] and [4] give outstanding in depth treatments.
• Section 8.1.2 of EDTC provides detailed intuition, and section 8.3 gives additional refer-

ences.
• EDTC, section 11.3.4 provides a specific treatment for the growth model we considered

in this lecture.

5.2 An Example of Stability

As stated above, the growth model treated here is stable under mild conditions on the primi-
tives.

• See EDTC, section 11.3.4 for more details.

We can see this stability in action — in particular, the convergence in (16) — by simulating
the path of densities from various initial conditions.

Here is such a figure

All sequences are converging towards the same limit, regardless of their initial condition.

The details regarding initial conditions and so on are given in this exercise, where you are
asked to replicate the figure.

5.3 Computing Stationary Densities

In the preceding figure, each sequence of densities is converging towards the unique stationary
density 𝜓∗.
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Even from this figure we can get a fair idea what 𝜓∗ looks like, and where its mass is located.

However, there is a much more direct way to estimate the stationary density, and it involves
only a slight modification of the look ahead estimator.

Let’s say that we have a model of the form (3) that is stable and ergodic.

Let 𝑝 be the corresponding stochastic kernel, as given in (7).

To approximate the stationary density 𝜓∗, we can simply generate a long time series
𝑋0, 𝑋1, … , 𝑋𝑛 and estimate 𝜓∗ via

𝜓∗
𝑛(𝑦) = 1

𝑛
𝑛

∑
𝑡=1

𝑝(𝑋𝑡, 𝑦) (18)

This is essentially the same as the look ahead estimator (13), except that now the observa-
tions we generate are a single time series, rather than a cross section.

The justification for (18) is that, with probability one as 𝑛 → ∞,

1
𝑛

𝑛
∑
𝑡=1

𝑝(𝑋𝑡, 𝑦) → ∫ 𝑝(𝑥, 𝑦)𝜓∗(𝑥) 𝑑𝑥 = 𝜓∗(𝑦)

where the convergence is by (17) and the equality on the right is by (15).

The right hand side is exactly what we want to compute.

On top of this asymptotic result, it turns out that the rate of convergence for the look ahead
estimator is very good.

The first exercise helps illustrate this point.

6 Exercises

6.1 Exercise 1

Consider the simple threshold autoregressive model

𝑋𝑡+1 = 𝜃|𝑋𝑡| + (1 − 𝜃2)1/2𝜉𝑡+1 where {𝜉𝑡}
IID∼ 𝑁(0, 1) (19)

This is one of those rare nonlinear stochastic models where an analytical expression for the
stationary density is available.

In particular, provided that |𝜃| < 1, there is a unique stationary density 𝜓∗ given by

𝜓∗(𝑦) = 2 𝜙(𝑦) Φ [ 𝜃𝑦
(1 − 𝜃2)1/2 ] (20)

Here 𝜙 is the standard normal density and Φ is the standard normal cdf.

As an exercise, compute the look ahead estimate of 𝜓∗, as defined in (18), and compare it
with 𝜓∗ in (20) to see whether they are indeed close for large 𝑛.

In doing so, set 𝜃 = 0.8 and 𝑛 = 500.
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The next figure shows the result of such a computation

The additional density (black line) is a nonparametric kernel density estimate, added to the
solution for illustration.

(You can try to replicate it before looking at the solution if you want to)

As you can see, the look ahead estimator is a much tighter fit than the kernel density estima-
tor.

If you repeat the simulation you will see that this is consistently the case.

6.2 Exercise 2

Replicate the figure on global convergence shown above.

The densities come from the stochastic growth model treated at the start of the lecture.

Begin with the code found in stochasticgrowth.py.

Use the same parameters.

For the four initial distributions, use the beta distribution and shift the random draws as
shown below

ψ_0 = Beta(5.0, 5.0) # Initial distribution
n = 1000
# .... more setup

for i in 1:4
# .... some code
rand_draws = (rand(ψ_0, n) .+ 2.5i) ./ 2
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6.3 Exercise 3

A common way to compare distributions visually is with boxplots.

To illustrate, let’s generate three artificial data sets and compare them with a boxplot

In [4]: n = 500
x = randn(n) # N(0, 1)
x = exp.(x) # Map x to lognormal
y = randn(n) .+ 2.0 # N(2, 1)
z = randn(n) .+ 4.0 # N(4, 1)
data = vcat(x, y, z)
l = ["X" "Y" "Z"]
xlabels = reshape(repeat(l, n), 3n, 1)

boxplot(xlabels, data, label = "", ylims = (-2, 14))

Out[4]:

The three data sets are

{𝑋1, … , 𝑋𝑛} ∼ 𝐿𝑁(0, 1), {𝑌1, … , 𝑌𝑛} ∼ 𝑁(2, 1), and {𝑍1, … , 𝑍𝑛} ∼ 𝑁(4, 1),

The figure looks as follows.

Each data set is represented by a box, where the top and bottom of the box are the third and
first quartiles of the data, and the red line in the center is the median.

The boxes give some indication as to

• the location of probability mass for each sample
• whether the distribution is right-skewed (as is the lognormal distribution), etc
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Now let’s put these ideas to use in a simulation.

Consider the threshold autoregressive model in (19).

We know that the distribution of 𝑋𝑡 will converge to (20) whenever |𝜃| < 1.

Let’s observe this convergence from different initial conditions using boxplots.

In particular, the exercise is to generate J boxplot figures, one for each initial condition 𝑋0 in

initial_conditions = range(8, 0, length = J)

For each 𝑋0 in this set,

1. Generate 𝑘 time series of length 𝑛, each starting at 𝑋0 and obeying (19).

2. Create a boxplot representing 𝑛 distributions, where the 𝑡-th distribution shows the 𝑘
observations of 𝑋𝑡.

Use 𝜃 = 0.9, 𝑛 = 20, 𝑘 = 5000, 𝐽 = 8.

7 Solutions

In [5]: using KernelDensity

7.1 Exercise 1

Look ahead estimation of a TAR stationary density, where the TAR model is

𝑋𝑡+1 = 𝜃|𝑋𝑡| + (1 − 𝜃2)1/2𝜉𝑡+1

and 𝜉𝑡 ∼ 𝑁(0, 1). Try running at n = 10, 100, 1000, 10000 to get an idea of the speed of con-
vergence.

In [6]: ϕ = Normal()
n = 500
θ = 0.8
d = sqrt(1.0 - θ^2)
δ = θ / d

# true density of TAR model
ψ_star(y) = 2 .* pdf.(ϕ, y) .* cdf.(ϕ, δ * y)

# Stochastic kernel for the TAR model.
p_TAR(x, y) = pdf.(ϕ, (y .- θ .* abs.(x)) ./ d) ./ d

Z = rand(ϕ, n)
X = zeros(n)
for t in 1:n-1

X[t+1] = θ * abs(X[t]) + d * Z[t]
end

16



ψ_est(a) = lae_est(LAE(p_TAR, X), a)
k_est = kde(X)

ys = range(-3, 3, length = 200)
plot(ys, ψ_star(ys), color=:blue, lw = 2, alpha = 0.6, label = "true")
plot!(ys, ψ_est(ys), color=:green, lw = 2, alpha = 0.6, label = "look�

↪ahead estimate")
plot!(k_est.x, k_est.density, color = :black, lw = 2, alpha = 0.6,

label = "kernel based estimate")

Out[6]:

7.2 Exercise 2

Here’s one program that does the job.

In [7]: s = 0.2
δ = 0.1
a_σ = 0.4 # A = exp(B) where B ~ N(0, a_σ)
α = 0.4 # We set f(k) = k**α
ψ_0 = Beta(5.0, 5.0) # Initial distribution
ϕ = LogNormal(0.0, a_σ)

function p_growth(x, y)
# Stochastic kernel for the growth model with Cobb-Douglas production.
# Both x and y must be strictly positive.

d = s * x.^α

pdf_arg = clamp.((y .- (1-δ) .* x) ./ d, eps(), Inf)
return pdf.(ϕ, pdf_arg) ./ d
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end

n = 1000 # Number of observations at each date t
T = 40 # Compute density of k_t at 1,...,T+1

xmax = 6.5
ygrid = range(0.01, xmax, length = 150)
laes_plot = zeros(length(ygrid), 4T)
colors = []
for i in 1:4

k = zeros(n, T)
A = rand!(ϕ, zeros(n, T))

# Draw first column from initial distribution
# match scale = 0.5 and loc = 2i in julia version
k[:, 1] = (rand(ψ_0, n) .+ 2.5i) ./ 2
for t in 1:T-1

k[:, t+1] = s * A[:, t] .* k[:, t].^α + (1 - δ) .* k[:, t]
end

# Generate T instances of LAE using this data, one for each date t
laes = [LAE(p_growth, k[:, t]) for t in T:-1:1]
ind = i
for j in 1:T

ψ = laes[j]
laes_plot[:, ind] = lae_est(ψ, ygrid)
ind = ind + 4
push!(colors, RGBA(0, 0, 0, 1 - (j - 1) / T))

end
end

#colors = reshape(reshape(colors, T, 4)', 4*T, 1)
colors = reshape(colors, 1, length(colors))
plot(ygrid, laes_plot, layout = (2,2), color = colors,

legend = :none, xlabel = "capital", xlims = (0, xmax))

Out[7]:
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7.3 Exercise 3

Here’s a possible solution.

Note the way we use vectorized code to simulate the 𝑘 time series for one boxplot all at once.

In [8]: n = 20
k = 5000
J = 6

θ = 0.9
d = sqrt(1 - θ^2)
δ = θ / d

initial_conditions = range(8, 0, length = J)

Z = randn(k, n, J)
titles = []
data = []
x_labels = []
for j in 1:J

title = "time series from t = $(initial_conditions[j])"
push!(titles, title)

X = zeros(k, n)
X[:, 1] .= initial_conditions[j]
labels = []
labels = vcat(labels, ones(k, 1))
for t in 2:n

X[:, t] = θ .* abs.(X[:, t-1]) .+ d .* Z[:, t, j]
labels = vcat(labels, t*ones(k, 1))

end
X = reshape(X, n*k, 1)
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push!(data, X)
push!(x_labels, labels)

end

In [9]: plots = []
for i in 1:J

push!(plots, boxplot(vec(x_labels[i]), vec(data[i]), title = titles[i]))
end
plot(plots..., layout = (J, 1), legend = :none, size = (800, 2000))

Out[9]:
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8 Appendix

Here’s the proof of (6).

Let 𝐹𝑈 and 𝐹𝑉 be the cumulative distributions of 𝑈 and 𝑉 respectively.

By the definition of 𝑉 , we have 𝐹𝑉 (𝑣) = ℙ{𝑎 + 𝑏𝑈 ≤ 𝑣} = ℙ{𝑈 ≤ (𝑣 − 𝑎)/𝑏}.

In other words, 𝐹𝑉 (𝑣) = 𝐹𝑈((𝑣 − 𝑎)/𝑏).
Differentiating with respect to 𝑣 yields (6).
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