Data and Statistics Packages

Jesse Perla, Thomas J. Sargent and John Stachurski

March 5, 2020

1 Contents

- Overview 2
- DataFrames 3
- Statistics and Econometrics 4

2 Overview

This lecture explores some of the key packages for working with data and doing statistics in Julia.

In particular, we will examine the DataFrame object in detail (i.e., construction, manipulation, querying, visualization, and nuances like missing data).

While Julia is not an ideal language for pure cookie-cutter statistical analysis, it has many useful packages to provide those tools as part of a more general solution.

This list is not exhaustive, and others can be found in organizations such as JuliaStats, JuliaData, and QueryVerse.

2.1 Setup

In [1]: using InstantiateFromURL
github_project("QuantEcon/quantecon-notebooks-julia", version = "0.5.0")
 # github_project("QuantEcon/quantecon-notebooks-julia", version = "0.5.0", instantiate = true) # uncomment to force package installation

In [2]: using LinearAlgebra, Statistics
 using DataFrames, RDatasets, DataFramesMeta, CategoricalArrays, Query,
 VegaLite
 using DataVoyager, GLM
3 DataFrames

A useful package for working with data is **DataFrames.jl**.

The most important data type provided is a **DataFrame**, a two dimensional array for storing heterogeneous data.

Although data can be heterogeneous within a **DataFrame**, the contents of the columns must be homogeneous (of the same type).

This is analogous to a `data.frame` in R, a **DataFrame** in Pandas (Python) or, more loosely, a spreadsheet in Excel.

There are a few different ways to create a **DataFrame**.

3.1 Constructing and Accessing a DataFrame

The first is to set up columns and construct a dataframe by assigning names

```
In [3]: using DataFrames, RDatasets # RDatasets provides good standard data\ examples from R

# note use of missing
commodities = ["crude", "gas", "gold", "silver"]
last_price = [4.2, 11.3, 12.1, missing]
df = DataFrame(commod = commodities, price = last_price)
```

```
Out[3]: \begin{tabular}{r|c}
& commod & price \\
\hline
& String & Float64 \\
\hline
1 & crude & 4.2
2 & gas & 11.3
3 & gold & 12.1
4 & silver & \\
\end{tabular}
```

Columns of the **DataFrame** can be accessed by name using `df.col`, as below

```
In [4]: df.price
```

```
Out[4]: 4-element Array{Union{Missing, Float64},1}:
  4.2
  11.3
  12.1
  missing
```

Note that the type of this array has values `Union{Missing, Float64}` since it was created with a `missing` value.

```
In [5]: df.commod
```
The **DataFrames.jl** package provides a number of methods for acting on DataFrame’s, such as `describe`.

```julia
In [6]: DataFrames.describe(df)
```

```
\begin{tabular}{r|cccccccc}
& variable & mean & min & median & max & nunique & nmissing & eltype\\
\hline
& Symbol & …Union & Any & …Union & Any & …Union & …Union & Type\\
\hline
1 & commod & & crude & & silver & 4 & & String \\
2 & price & 9.2 & 4.2 & 11.3 & 12.1 & & 1 & Union\{Missing, Float64\} \\
\end{tabular}
```

While often data will be generated all at once, or read from a file, you can add to a DataFrame by providing the key parameters.

```julia
In [7]: nt = (commod = "nickel", price= 5.1)
push!(df, nt)
```

```
\begin{tabular}{r|cc}
& commod & price\\
\hline
& String & Float64\\
\hline
1 & crude & 4.2 \\
2 & gas & 11.3 \\
3 & gold & 12.1 \\
4 & silver & \\
5 & nickel & 5.1 \\
\end{tabular}
```

Named tuples can also be used to construct a DataFrame, and have it properly deduce all types.

```julia
In [8]: nt = (t = 1, col1 = 3.0)
df2 = DataFrame([nt])
push!(df2, (t=2, col1 = 4.0))
```

```
\begin{tabular}{r|cc}
& t & col1\\
\hline
& Int64 & Float64\\
\hline
1 & 1 & 3.0 \\
2 & 2 & 4.0 \\
\end{tabular}
```
In order to modify a column, access the mutating version by the symbol `df[!, :col]`.

In [9]: `df[!, :price]`

Out[9]: 5-element Array{Union{Missing, Float64},1}:
4.2
11.3
12.1
 missing
 5.1

Which allows modifications, like other mutating `!` functions in julia.

In [10]: `df[!, :price] *= 2.0 # double prices`

Out[10]: 5-element Array{Union{Missing, Float64},1}:
8.4
22.6
24.2
 missing
 10.2

As discussed in the next section, note that the fundamental types, is propagated, i.e. `missing * 2 === missing`.

3.2 Working with Missing

As we discussed in fundamental types, the semantics of missing are that mathematical operations will not silently ignore it.

In order to allow missing in a column, you can create/load the DataFrame from a source with missing’s, or call `allowmissing!` on a column.

In [11]: `allowmissing!(df2, :col1) # necessary to add in a for col1`
 push!(df2, (t=3, col1 = missing))
 push!(df2, (t=4, col1 = 5.1))

Out[11]:

```
\begin{tabular}{rr}
  t & col1 \\
  \hline
  1 & 3.0 \\
  2 & 4.0 \\
  3 & 5.1 \\
\end{tabular}
```

We can see the propagation of missing to caller functions, as well as a way to efficiently calculate with non-missing data.

In [12]: `@show mean(df2.col1)`
 `@show mean(skipmissing(df2.col1))`
mean(df2.col1) = missing
mean(skipmissing(df2.col1)) = 4.033333333333333

Out[12]: 4.033333333333333

And to replace the missing

In [13]: df2.col1 .= coalesce.(df2.col1, 0.0) # replace all missing with 0.0

Out[13]: 4-element Array{Union{Missing, Float64},1}:
 3.0
 4.0
 0.0
 5.1

3.3 Manipulating and Transforming DataFrames

One way to do an additional calculation with a DataFrame is to use the @transform macro from DataFramesMeta.jl.

In [14]: using DataFramesMeta
 f(x) = x^2
 df2 = @transform(df2, col2 = f.(col1))

Out[14]: \begin{tabular}{r|ccc}
 & t & col1 & col2
 \hline
 1 & 1 & 3.0 & 9.0 \\
 2 & 2 & 4.0 & 16.0 \\
 3 & 3 & 0.0 & 0.0 \\
 4 & 4 & 5.1 & 26.01 \\
\end{tabular}

3.4 Categorical Data

For data that is categorical

In [15]: using CategoricalArrays
 id = [1, 2, 3, 4]
 y = ["old", "young", "young", "old"
 y = CategoricalArray(y)
 df = DataFrame(id=id, y=y)

Out[15]: \begin{tabular}{r|cc}
 & id & y
 \hline
 & Int64 & ...Categorical
 \hline
1 & 1 & old \\ 2 & 2 & young \\ 3 & 3 & young \\ 4 & 4 & old \\
\end{tabular}

In [16]: levels(df.y)

Out[16]: 2-element Array{String,1}:
 "old"
 "young"

3.5 Visualization, Querying, and Plots

The DataFrame (and similar types that fulfill a standard generic interface) can fit into a variety of packages.

One set of them is the QueryVerse.

Note: The QueryVerse, in the same spirit as R’s tidyverse, makes heavy use of the pipeline syntax |>

In [17]:

```plaintext
x = 3.0
f(x) = x^2
g(x) = log(x)

@show g(f(x))
@show x |> f |> g; # pipes nest function calls
```

```
g(f(x)) = 2.1972245773362196
(x |> f) |> g = 2.1972245773362196
```

To give an example directly from the source of the LINQ inspired Query.jl

In [18]: using Query

```
df = DataFrame(name=["John", "Sally", "Kirk"], age=[23., 42., 59.],
children=[3,5,2])
```

```
x = @from i in df begin
    @where i.age>50
    @select {i.name, i.children}
    @collect DataFrame
end
```

Out[18]:

```
\begin{tabular}{r|cc}
& name & children \\
\hline
1 & Kirk & 2 \\
\end{tabular}
```

6
While it is possible to just use the `Plots.jl` library, there may be better options for displaying tabular data – such as `VegaLite.jl`.

```julia
In [19]: using RDatasets, VegaLite
iris = dataset("datasets", "iris")
iris |> @vlplot(
    :point,
    x=:PetalLength,
    y=:PetalWidth,
    color=:Species
)
```

```plaintext
Out[19]:
TypeError: Cannot read property 'getContext' of null
```

Another useful tool for exploring tabular data is `DataVoyager.jl`.

```julia
using DataVoyager
iris |> Voyager()
```

The `Voyager()` function creates a separate window for analysis.

4 Statistics and Econometrics

While Julia is not intended as a replacement for R, Stata, and similar specialty languages, it has a growing number of packages aimed at statistics and econometrics.

Many of the packages live in the `JuliaStats` organization.

A few to point out
• **StatsBase** has basic statistical functions such as geometric and harmonic means, autocorrelations, robust statistics, etc.
• **StatsFuns** has a variety of mathematical functions and constants such as pdf and cdf of many distributions, softmax, etc.

4.1 General Linear Models

To run linear regressions and similar statistics, use the **GLM** package.

```julia
In [20]: using GLM

x = randn(100)
y = 0.9 .* x + 0.5 * rand(100)
df = DataFrame(x=x, y=y)
ols = lm(@formula(y ~ x), df) # R-style notation
```

```plaintext
Out[20]: StatsModels.TableRegressionModel{LinearModel{GLM.
  LmResp{Array{Float64,1}},GLM.DensePredC
  hol{Float64,Cholesky{Float64,Array{Float64,2}}}},Array{Float64,2}}
y ~ 1 + x

Coefficients:
                 Estimate  Std. Error  t value  Pr(>|t|)    Lower 95%   Upper 95%
(Intercept)   0.265691        0.015718    16.9032 <1e-30    0.234499    0.296884
            x       0.890788        0.017779   50.1019 <1e-70    0.855505    0.92607
```

To display the results in a useful tables for LaTeX and the REPL, use **RegressionTables** for output similar to the Stata package esttab and the R package stargazer.

```julia
In [21]: using RegressionTables

regtable(ols)
# regtable(ols, renderSettings = latexOutput()) # for LaTeX output
```

```
\begin{verbatim}
|          | Estimate | Std. Error | t value | Pr(>|t|) | Lower 95% | Upper 95% |
|----------|----------|------------|---------|----------|-----------|-----------|
| (Intercept) | 0.266*** | 0.0157184  | 16.9032 | <1e-30   | 0.234499  | 0.296884  |
| x         | 0.890*** | 0.0177795  | 50.1019 | <1e-70   | 0.855505  | 0.92607   |
\end{verbatim}
```

8
4.2 Fixed Effects

While Julia may be overkill for estimating a simple linear regression, fixed-effects estimation with dummies for multiple variables are much more computationally intensive.

For a 2-way fixed-effect, taking the example directly from the documentation using cigarette consumption data

In [22]: using FixedEffectModels
cigar = dataset("plm", "Cigar")
cigar.StateCategorical = categorical(cigar.State)
cigar.YearCategorical = categorical(cigar.Year)
fixedeffectresults = reg(cigar, @model(Sales ~ NDI, fe = StateCategorical + YearCategorical, weights = Pop, vcov = cluster(StateCategorical)))
regtable(fixedeffectresults)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Sales</td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td></td>
</tr>
<tr>
<td>NDI</td>
<td>-0.005***</td>
</tr>
<tr>
<td>(0.001)</td>
<td></td>
</tr>
<tr>
<td>StateCategorical</td>
<td>Yes</td>
</tr>
<tr>
<td>YearCategorical</td>
<td>Yes</td>
</tr>
<tr>
<td>Estimator</td>
<td>OLS</td>
</tr>
<tr>
<td>N</td>
<td>1,380</td>
</tr>
<tr>
<td>R2</td>
<td>-81.575</td>
</tr>
</tbody>
</table>

To explore data use the interactive DataVoyager and VegaLite.

In [23]: cigar = dataset("plm", "Cigar")
cigar |> Voyager()
cigar |> @vlplot(
 :point,
 x=:Price,
 y=:Sales,
 color=:Year,
 size=:NDI
)

Out[23]:
TypeError: Cannot read property 'getContext' of null
at resize (/home/ubuntu/.julia/packages/VegaLite/sHyyT/deps/node_modules/vega-scenegraph/build/vega-scenegraph.js:3377:26)
at CanvasRenderer.prototype$6.resize