Dynamic Stackelberg Problems

Jesse Perla, Thomas J. Sargent and John Stachurski

March 5, 2020

1 Contents

- Duopoly 2
- The Stackelberg Problem 3
- Stackelberg Plan 4
- Recursive Representation of Stackelberg Plan 5
- Computing the Stackelberg Plan 6
- Exhibiting Time Inconsistency of Stackelberg Plan 7
- Recursive Formulation of the Follower’s Problem 8
- Markov Perfect Equilibrium 9
- MPE vs. Stackelberg 10

This notebook formulates and computes a plan that a Stackelberg leader uses to manipulate forward-looking decisions of a Stackelberg follower that depend on continuation sequences of decisions made once and for all by the Stackelberg leader at time 0.

To facilitate computation and interpretation, we formulate things in a context that allows us to apply linear optimal dynamic programming.

From the beginning we carry along a linear-quadratic model of duopoly in which firms face adjustment costs that make them want to forecast actions of other firms that influence future prices.

2 Duopoly

Time is discrete and is indexed by $t = 0, 1, \ldots$.

Two firms produce a single good whose demand is governed by the linear inverse demand curve

$$p_t = a_0 - a_1(q_{1t} + q_{2t})$$

where q_{it} is output of firm i at time t and a_0 and a_1 are both positive.

q_{10}, q_{20} are given numbers that serve as initial conditions at time 0.

By incurring a cost of change
where \(\gamma > 0 \), firm \(i \) can change its output according to

\[
q_{i,t+1} = q_{i,t} + v_{i,t}
\]

Firm \(i \)'s profits at time \(t \) equal

\[
\pi_{i,t} = p_t q_{i,t} - \gamma v_{i,t}^2
\]

Firm \(i \) wants to maximize the present value of its profits

\[
\sum_{t=0}^{\infty} \beta^t \pi_{i,t}
\]

where \(\beta \in (0, 1) \) is a time discount factor.

2.1 Stackelberg Leader and Follower

Each firm \(i = 1, 2 \) chooses a sequence \(\tilde{q}_i \equiv \{q_{i,t+1}\}_{t=0}^{\infty} \) once and for all at time 0.

We let firm 2 be a **Stackelberg leader** and firm 1 be a **Stackelberg follower**.

The leader firm 2 goes first and chooses \(\{q_{2,t+1}\}_{t=0}^{\infty} \) once and for all at time 0.

Knowing that firm 2 has chosen \(\{q_{2,t+1}\}_{t=0}^{\infty} \), the follower firm 1 goes second and chooses \(\{q_{1,t+1}\}_{t=0}^{\infty} \) once and for all at time 0.

In choosing \(\tilde{q}_2 \), firm 2 takes into account that firm 1 will base its choice of \(\tilde{q}_1 \) on firm 2’s choice of \(\tilde{q}_2 \).

2.2 Abstract Statement of the Leader’s and Follower’s Problems

We can express firm 1’s problem as

\[
\max_{\tilde{q}_1} \Pi_1(\tilde{q}_1; \tilde{q}_2)
\]

where the appearance behind the semi-colon indicates that \(\tilde{q}_2 \) is given.

Firm 1’s problem induces a best response mapping

\[
\tilde{q}_1 = B(\tilde{q}_2)
\]

(Here \(B \) maps a sequence into a sequence)

The Stackelberg leader’s problem is

\[
\max_{\tilde{q}_2} \Pi_2(B(\tilde{q}_2), \tilde{q}_2)
\]

whose maximizer is a sequence \(\tilde{q}_2 \) that depends on the initial conditions \(q_{10}, q_{20} \) and the parameters of the model \(a_0, a_1, \gamma \).

This formulation captures key features of the model
• Both firms make once-and-for-all choices at time 0.
• This is true even though both firms are choosing sequences of quantities that are indexed by time.
• The Stackelberg leader chooses first within time 0, knowing that the Stackelberg follower will choose second within time 0.

While our abstract formulation reveals the timing protocol and equilibrium concept well, it obscures details that must be addressed when we want to compute and interpret a Stackelberg plan and the follower’s best response to it.

To gain insights about these things, we study them in more detail.

2.3 Firms’ Problems

Firm 1 acts as if firm 2’s sequence \{q_{2t+1}\}_{t=0}^{\infty} is given and beyond its control.

Firm 2 knows that firm 1 chooses second and takes this into account in choosing \{q_{2t+1}\}_{t=0}^{\infty}.

In the spirit of working backwards, we study firm 1’s problem first, taking \{q_{2t+1}\}_{t=0}^{\infty} as given.

We can formulate firm 1’s optimum problem in terms of the Lagrangian

\[L = \sum_{t=0}^{\infty} \beta^t \{a_0 q_{1t} - a_1 q_{2t}^2 - a_1 q_{1t} q_{2t} - \gamma v_{1t}^2 + \lambda_t [q_{1t} + v_{1t} - q_{1t+1}] \} \]

Firm 1 seeks a maximum with respect to \{q_{1t+1}, v_{1t}\}_{t=0}^{\infty} and a minimum with respect to \{\lambda_t\}_{t=0}^{\infty}.

We approach this problem using methods described in Ljungqvist and Sargent RMT5 chapter 2, appendix A and Macroeconomic Theory, 2nd edition, chapter IX.

First-order conditions for this problem are

\[\frac{\partial L}{\partial q_{1t}} = a_0 - 2a_1 q_{1t} - a_1 q_{2t} + \lambda_t - \beta^{-1} \lambda_{t-1} = 0, \quad t \geq 1 \]

\[\frac{\partial L}{\partial v_{1t}} = -2\gamma v_{1t} + \lambda_t = 0, \quad t \geq 0 \]

These first-order conditions and the constraint \(q_{1t+1} = q_{1t} + v_{1t}\) can be rearranged to take the form

\[v_{1t} = \beta v_{1t+1} + \frac{\beta a_0}{2\gamma} - \frac{\beta a_1}{\gamma} q_{1t+1} - \frac{\beta a_1}{2\gamma} q_{2t+1} \]

\[q_{t+1} = q_{1t} + v_{1t} \]

We can substitute the second equation into the first equation to obtain

\[(q_{1t+1} - q_{1t}) = \beta (q_{1t+2} - q_{1t+1}) + c_0 - c_1 q_{1t+1} - c_2 q_{2t+1} \]

where \(c_0 = \frac{\beta a_0}{2\gamma}, c_1 = \frac{\beta a_1}{\gamma}, c_2 = \frac{\beta a_1}{2\gamma}\).

This equation can in turn be rearranged to become the second-order difference equation
\[q_{1t} + (1 + \beta + c_1)q_{1t+1} - \beta q_{1t+2} = c_0 - c_2q_{2t+1} \]

Equation (1) is a second-order difference equation in the sequence \(q_1 \) whose solution we want. It satisfies the following boundary conditions:

- an initial condition that \(q_{1,0} \), which is given
- a terminal condition requiring that \(\lim_{T \to +\infty} \beta^T q_{1t}^2 < +\infty \)

Using the lag operators described in chapter IX of *Macroeconomic Theory, Second edition (1987)*, difference equation (1) can be written as

\[\beta(1 - \frac{1 + \beta + c_1}{\beta} L + \beta^{-1} L^2)q_{1t+2} = -c_0 + c_2q_{2t+1} \]

The polynomial in the lag operator on the left side can be factored as

\[(1 - \frac{1 + \beta + c_1}{\beta} L + \beta^{-1} L^2) = (1 - \delta_1 L)(1 - \delta_2 L) \]

where \(0 < \delta_1 < 1 < \frac{1}{\sqrt{\beta}} < \delta_2 \).

Because \(\delta_2 > \frac{1}{\sqrt{\beta}} \), the operator \((1 - \delta_2 L) \) contributes an unstable component if solved backwards but a stable component if solved forwards.

Mechanically, write

\[(1 - \delta_2 L) = -\delta_2 L(1 - \delta_2^{-1} L^{-1}) \]

and compute the following inverse operator

\[[-\delta_2 L(1 - \delta_2^{-1} L^{-1})]^{-1} = -\delta_2(1 - \delta_2^{-1})^{-1} L^{-1} \]

Operating on both sides of equation (2) with \(\beta^{-1} \) times this inverse operator gives the follower’s decision rule for setting \(q_{1t+1} \) in the feedback-feedforward form

\[q_{1t+1} = \delta_1 q_{1t} - c_0 \delta_2^{-1} \beta^{-1} \frac{1}{1 - \delta_2^{-1}} + c_2 \delta_2^{-1} \beta^{-1} \sum_{j=0}^{\infty} \delta_2^j q_{2t+j+1}, \quad t \geq 0 \]

The problem of the Stackelberg leader firm 2 is to choose the sequence \(\{q_{2t+1}\}_{t=0}^\infty \) to maximize its discounted profits

\[\sum_{t=0}^{\infty} \beta^t \{ (a_0 - a_1(q_{1t} + q_{2t}))q_{2t} - \gamma(q_{2t+1} - q_{2t})^2 \} \]

subject to the sequence of constraints (3) for \(t \geq 0 \).

We can put a sequence \(\{\theta_t\}_{t=0}^\infty \) of Lagrange multipliers on the sequence of equations (3) and formulate the following Lagrangian for the Stackelberg leader firm 2’s problem
\[\bar{L} = \sum_{t=0}^{\infty} \beta^t \left\{ (a_0 - a_1(q_{1t} + q_{2t}))q_{2t} - \gamma(q_{2t+1} - q_{2t})^2 \right\} \\
+ \sum_{t=0}^{\infty} \beta^t \left\{ \delta_1 q_{1t} - c_0 \delta_2^{-1} \beta^{-1} \frac{1}{1 - \delta_2^{-1}} + c_2 \delta_2^{-1} \beta^{-1} \sum_{j=0}^{\infty} \delta_2^{-j} q_{2t+j+1} - q_{1t+1} \right\} \]

subject to initial conditions for \(q_{1t}, q_{2t} \) at \(t = 0 \).

Comments: We have formulated the Stackelberg problem in a space of sequences.

The max-min problem associated with Lagrangian (4) is unpleasant because the time \(t \) component of firm 1’s payoff function depends on the entire future of its choices of \(\{q_{1t+j}\}_{j=0}^{\infty} \).

This renders a direct attack on the problem cumbersome.

Therefore, below, we will formulate the Stackelberg leader’s problem recursively.

We’ll put our little duopoly model into a broader class of models with the same conceptual structure.

3 The Stackelberg Problem

We formulate a class of linear-quadratic Stackelberg leader-follower problems of which our duopoly model is an instance.

We use the optimal linear regulator (a.k.a. the linear-quadratic dynamic programming problem described in LQ Dynamic Programming problems) to represent a Stackelberg leader’s problem recursively.

Let \(z_t \) be an \(n_z \times 1 \) vector of **natural state variables**.

Let \(x_t \) be an \(n_x \times 1 \) vector of endogenous forward-looking variables that are physically free to jump at \(t \).

In our duopoly example \(x_t = v_{1t}, \) the time \(t \) decision of the Stackelberg **follower**.

Let \(u_t \) be a vector of decisions chosen by the Stackelberg leader at \(t \).

The \(z_t \) vector is inherited physically from the past.

But \(x_t \) is a decision made by the Stackelberg follower at time \(t \) that is the follower’s best response to the choice of an entire sequence of decisions made by the Stackelberg leader at time \(t = 0 \).

Let

\[y_t = \begin{bmatrix} z_t \\
 x_t \end{bmatrix} \]

Represent the Stackelberg leader’s one-period loss function as

\[r(y, u) = y'Ry + u'Qu \]

Subject to an initial condition for \(z_0 \), but not for \(x_0 \), the Stackelberg leader wants to maximize
The Stackelberg leader faces the model

\[
- \sum_{t=0}^{\infty} \beta^t r(y_t, u_t)
\]

(5)

We assume that the matrix

\[
\begin{bmatrix}
I & 0 \\
G_{21} & G_{22}
\end{bmatrix}
\]

on the left side of equation (6) is invertible, so that we can multiply both sides by its inverse to obtain

\[
\begin{bmatrix}
z_{t+1} \\
x_{t+1}
\end{bmatrix} = \begin{bmatrix}
\hat{A}_{11} & \hat{A}_{12} \\
\hat{A}_{21} & \hat{A}_{22}
\end{bmatrix} \begin{bmatrix}
z_t \\
x_t
\end{bmatrix} + Bu_t
\]

(7)

or

\[
y_{t+1} = Ay_t + Bu_t
\]

(8)

3.1 Interpretation of the Second Block of Equations

The Stackelberg follower’s best response mapping is summarized by the second block of equations of (7).

In particular, these equations are the first-order conditions of the Stackelberg follower’s optimization problem (i.e., its Euler equations).

These Euler equations summarize the forward-looking aspect of the follower’s behavior and express how its time \(t \) decision depends on the leader’s actions at times \(s \geq t \).

When combined with a stability condition to be imposed below, the Euler equations summarize the follower’s best response to the sequence of actions by the leader.

The Stackelberg leader maximizes (5) by choosing sequences \(\{u_t, x_t, z_{t+1}\}_{t=0}^{\infty} \) subject to (8) and an initial condition for \(z_0 \).

Note that we have an initial condition for \(z_0 \) but not for \(x_0 \).

\(x_0 \) is among the variables to be chosen at time 0 by the Stackelberg leader.

The Stackelberg leader uses its understanding of the responses restricted by (8) to manipulate the follower’s decisions.

3.2 More Mechanical Details

For any vector \(a_t \), define \(\vec{a}_t = [a_t, a_{t+1} ...] \).

Define a feasible set of \((\vec{y}_1, \vec{u}_0) \) sequences

\[
\Omega(y_0) = \{ (\vec{y}_1, \vec{u}_0) : y_{t+1} = Ay_t + Bu_t, \forall t \geq 0 \}
\]
Please remember that the follower’s Euler equation is embedded in the system of dynamic equations $y_{t+1} = Ay_t + Bu_t$.

Note that in the definition of $\Omega(y_0)$, y_0 is taken as given.

Although it is taken as given in $\Omega(y_0)$, eventually, the x_0 component of y_0 will be chosen by the Stackelberg leader.

3.3 Two Subproblems

Once again we use backward induction.

We express the Stackelberg problem in terms of two subproblems.

Subproblem 1 is solved by a continuation Stackelberg leader at each date $t \geq 0$.

Subproblem 2 is solved the Stackelberg leader at $t = 0$.

The two subproblems are designed

- to respect the protocol in which the follower chooses \vec{q}_1 after seeing \vec{q}_2 chosen by the leader
- to make the leader choose \vec{q}_2 while respecting that \vec{q}_1 will be the follower’s best response to \vec{q}_2
- to represent the leader’s problem recursively by artfully choosing the state variables confronting and the control variables available to the leader

3.3.1 Subproblem 1

$$v(y_0) = \max_{(\vec{q}_1, \vec{a}_0) \in \Omega(y_0)} \sum_{t=0}^{\infty} \beta^t r(y_t, u_t)$$

3.3.2 Subproblem 2

$$w(z_0) = \max_{x_0} v(y_0)$$

Subproblem 1 takes the vector of forward-looking variables x_0 as given.

Subproblem 2 optimizes over x_0.

The value function $w(z_0)$ tells the value of the Stackelberg plan as a function of the vector of natural state variables at time 0, z_0.

3.4 Two Bellman Equations

We now describe Bellman equations for $v(y)$ and $w(z_0)$.
3.4.1 Subproblem 1

The value function \(v(y) \) in subproblem 1 satisfies the Bellman equation

\[
v(y) = \max_{u,y^*} \{-r(y,u) + \beta v(y^*)\}
\] (9)

where the maximization is subject to

\[y^* = Ay + Bu \]

and \(y^* \) denotes next period’s value.

Substituting \(v(y) = -y'P'y \) into Bellman equation (9) gives

\[
-y'P'y = \max_{u,y^*} \{-y'Ry - u'Qu - \beta y'^*P'y^*\}
\]

which as in lecture linear regulator gives rise to the algebraic matrix Riccati equation

\[
P = R + \beta A'PA - \beta^2 A'PB(Q + \beta B'PB)^{-1}B'PA
\]

and the optimal decision rule coefficient vector

\[
F = \beta(Q + \beta B'PB)^{-1}B'PA
\]

where the optimal decision rule is

\[
u_t = -Fy_t
\]

3.4.2 Subproblem 2

We find an optimal \(x_0 \) by equating to zero the gradient of \(v(y_0) \) with respect to \(x_0 \):

\[
-2P_{21}z_0 - 2P_{22}x_0 = 0,
\]

which implies that

\[
x_0 = -P^{-1}_{22}P_{21}z_0
\]

4 Stackelberg Plan

Now let’s map our duopoly model into the above setup.

We’ll formulate a state space system

\[
y_t = \begin{bmatrix} z_t \\ x_t \end{bmatrix}
\]

where in this instance \(x_t = v_{1t} \), the time \(t \) decision of the follower firm 1.
4.1 Calculations to Prepare Duopoly Model

Now we’ll proceed to cast our duopoly model within the framework of the more general linear-quadratic structure described above.

That will allow us to compute a Stackelberg plan simply by enlisting a Riccati equation to solve a linear-quadratic dynamic program.

As emphasized above, firm 1 acts as if firm 2’s decisions \(\{q_{2t+1}, v_{2t}\}_{t=0}^{\infty} \) are given and beyond its control.

4.2 Firm 1’s Problem

We again formulate firm 1’s optimum problem in terms of the Lagrangian

\[
L = \sum_{t=0}^{\infty} \beta^t \left(a_0 q_{1t} - a_1 q_1^2 t - a_1 q_{1t} q_{2t} - \gamma v_{1t}^2 + \lambda_t [q_{1t} + v_{1t} - q_{1t+1}] \right)
\]

Firm 1 seeks a maximum with respect to \(\{q_{1t+1}, v_{1t}\}_{t=0}^{\infty} \) and a minimum with respect to \(\{\lambda_t\}_{t=0}^{\infty} \).

First-order conditions for this problem are

\[
\frac{\partial L}{\partial q_{1t}} = a_0 - 2a_1 q_{1t} - a_1 q_{2t} + \lambda_t - \beta^{-1} \lambda_{t-1} = 0, \quad t \geq 1
\]

\[
\frac{\partial L}{\partial v_{1t}} = -2\gamma v_{1t} + \lambda_t = 0, \quad t \geq 0
\]

These first-order order conditions and the constraint \(q_{1t+1} = q_{1t} + v_{1t} \) can be rearranged to take the form

\[
v_{1t} = \beta v_{1t+1} + \frac{\beta a_0}{2\gamma} - \frac{\beta a_1}{\gamma} q_{1t+1} - \frac{\beta a_1}{2\gamma} q_{2t+1}
\]

\[
q_{t+1} = q_{1t} + v_{1t}
\]

We use these two equations as components of the following linear system that confronts a Stackelberg continuation leader at time \(t \)

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\frac{\beta a_0}{2\gamma} & -\frac{\beta a_1}{2\gamma} & -\frac{\beta a_1}{\gamma} & \beta
\end{bmatrix}
\begin{bmatrix}
q_{2t+1} \\
q_{1t+1} \\
v_{1t+1}
\end{bmatrix} =
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
q_{2t} \\
q_{1t} \\
v_{1t}
\end{bmatrix} +
\begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix} v_{2t}
\]

Time \(t \) revenues of firm 2 are \(\pi_{2t} = a_0 q_{2t} - a_1 q_{2t}^2 - a_1 q_{1t} q_{2t} \) which evidently equal

\[
z_t^r R_1 z_t = \begin{bmatrix}
1 \\
q_{2t} \\
q_{1t}
\end{bmatrix}^T \begin{bmatrix}
a_0 & 0 & -\frac{a_1}{2} \\
0 & a_1 & 0 \\
0 & -\frac{a_1}{2} & 0
\end{bmatrix} \begin{bmatrix}
1 \\
z_{2t} \\
z_{1t}
\end{bmatrix}
\]

If we set \(Q = \gamma \), then firm 2’s period \(t \) profits can then be written
\[y'_t R y_t - Q v^2_{2t} \]

where

\[y_t = \begin{bmatrix} z_t \\ x_t \end{bmatrix} \]

with \(x_t = v_{1t}\) and

\[R = \begin{bmatrix} R_1 & 0 \\ 0 & 0 \end{bmatrix} \]

We’ll report results of implementing this code soon.

But first we want to represent the Stackelberg leader’s optimal choices recursively.

It is important to do this for several reasons:

- properly to interpret a representation of the Stackelberg leaders’s choice as a sequence of history-dependent functions
- to formulate a recursive version of the follower’s choice problem

First let’s get a recursive representation of the Stackelberg leader’s choice of \(\vec{q}_2\) for our duopoly model.

5 Recursive Representation of Stackelberg Plan

In order to attain an appropriate representation of the Stackelberg leader’s history-dependent plan, we will employ what amounts to a version of the **Big K, little k** device often used in macroeconomics by distinguishing \(z_t\), which depends partly on decisions \(x_t\) of the followers, from another vector \(\tilde{z}_t\), which does not.

We will use \(\tilde{z}_t\) and its history \(\tilde{z}'_t = [\tilde{z}_t, \tilde{z}_{t-1}, \ldots, \tilde{z}_0]\) to describe the sequence of the Stackelberg leader’s decisions that the Stackelberg follower takes as given.

Thus, we let \(\tilde{y}'_t = [\tilde{z}'_t, \tilde{x}'_t]\) with initial condition \(\tilde{z}_0 = z_0\) given.

That we distinguish \(\tilde{z}_t\) from \(z_t\) is part and parcel of the **Big K, little k** device in this instance.

We have demonstrated that a Stackelberg plan for \(\{u_t\}_{t=0}^\infty\) has a recursive representation

\[
\begin{align*}
\tilde{x}_0 &= -P^{-1}_{22} P_{21} z_0 \\
u_t &= -F \tilde{y}_t, \quad t \geq 0 \\
\tilde{y}_{t+1} &= (A - BF) \tilde{y}_t, \quad t \geq 0
\end{align*}
\]

From this representation we can deduce the sequence of functions \(\sigma = \{\sigma_t(\tilde{z}'_t)\}_{t=0}^\infty\) that comprise a Stackelberg plan.

For convenience, let \(\tilde{A} \equiv A - BF\) and partition \(\tilde{A}\) conformably to the partition \(y_t = \begin{bmatrix} \tilde{z}_t \\ \tilde{x}_t \end{bmatrix}\) as
Let $H_0^0 = -P_{22}^{-1}P_{21}$ so that $\tilde{x}_0 = H_0^0 \tilde{z}_0$.

Then iterations on $\tilde{y}_{t+1} = A\tilde{y}_t$ starting from initial condition $\tilde{y}_0 = \begin{bmatrix} \tilde{z}_0 \\ H_0^0 \tilde{z}_0 \end{bmatrix}$ imply that for $t \geq 1$

\[
\tilde{x}_t = \sum_{j=1}^{t} H_j^t \tilde{z}_{t-j}
\]

where

\[
\begin{align*}
H_1^t &= \tilde{A}_{21} \\
H_2^t &= \tilde{A}_{22} \tilde{A}_{21} \\
& \vdots \\
H_{t-1}^t &= \tilde{A}_{22}^{t-2} \tilde{A}_{21} \\
H_t^t &= \tilde{A}_{22}^{t-1} (\tilde{A}_{21} + \tilde{A}_{22} H_0^0)
\end{align*}
\]

An optimal decision rule for the Stackelberg’s choice of u_t is

\[
u_t = -F\tilde{y}_t \equiv - \begin{bmatrix} F_z & F_x \end{bmatrix} \begin{bmatrix} \tilde{x}_t \\ \tilde{x}_t \end{bmatrix}
\]

or

\[
u_t = -F_z \tilde{z}_t - F_x \sum_{j=1}^{t} H_j^t (\tilde{z}_{t-j} = \sigma_t(\tilde{z}^t)) \tag{10}
\]

Representation (10) confirms that whenever $F_x \neq 0$, the typical situation, the time t component σ_t of a Stackelberg plan is **history dependent**, meaning that the Stackelberg leader’s choice u_t depends not just on \tilde{z}_t but on components of \tilde{z}^{t-1}.

5.1 Comments and Interpretations

After all, at the end of the day, it will turn out that because we set $\tilde{z}_0 = z_0$, it will be true that $z_t = \tilde{z}_t$ for all $t \geq 0$.

Then why did we distinguish \tilde{z}_t from z_t?

The answer is that if we want to present to the Stackelberg follower a history-dependent representation of the Stackelberg leader’s sequence \tilde{q}_2, we must use representation (10) cast in terms of the history \tilde{z}^t and **not** a corresponding representation cast in terms of z^t.

11
5.2 Dynamic Programming and Time Consistency of follower’s Problem

Given the sequence \tilde{q}_2 chosen by the Stackelberg leader in our duopoly model, it turns out that the Stackelberg follower’s problem is recursive in the natural state variables that confront a follower at any time $t \geq 0$.

This means that the follower’s plan is time consistent.

To verify these claims, we’ll formulate a recursive version of a follower’s problem that builds on our recursive representation of the Stackelberg leader’s plan and our use of the Big K, little k idea.

5.3 Recursive Formulation of a Follower’s Problem

We now use what amounts to another “Big K, little k” trick (see rational expectations equilibrium) to formulate a recursive version of a follower’s problem cast in terms of an ordinary Bellman equation.

Firm 1, the follower, faces $\{q_{2t}\}_{t=0}^{\infty}$ as a given quantity sequence chosen by the leader and believes that its output price at t satisfies

$$p_t = a_0 - a_1(q_{1t} + q_{2t}), \quad t \geq 0$$

Our challenge is to represent $\{q_{2t}\}_{t=0}^{\infty}$ as a given sequence.

To do so, recall that under the Stackelberg plan, firm 2 sets output according to the q_{2t} component of

$$y_{t+1} = \begin{bmatrix} 1 \\ q_{2t} \\ q_{1t} \\ x_t \end{bmatrix}$$

d which is governed by

$$y_{t+1} = (A - BF)y_t$$

To obtain a recursive representation of a $\{q_{2t}\}$ sequence that is exogenous to firm 1, we define a state \tilde{y}_t

$$\tilde{y}_t = \begin{bmatrix} 1 \\ q_{2t} \\ \tilde{q}_{1t} \\ \tilde{x}_t \end{bmatrix}$$

that evolves according to

$$\tilde{y}_{t+1} = (A - BF)\tilde{y}_t$$

subject to the initial condition $\tilde{q}_{10} = q_{10}$ and $\tilde{x}_0 = x_0$ where $x_0 = -P^{-1}_{22}P_{21}$ as stated above.

Firm 1’s state vector is
\[X_t = \begin{bmatrix} \tilde{y}_t \\ q_{1t} \end{bmatrix} \]

It follows that the follower firm 1 faces law of motion

\[
\begin{bmatrix} \tilde{y}_{t+1} \\ q_{1t+1} \end{bmatrix} = \begin{bmatrix} A - BF & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \tilde{y}_t \\ q_{1t} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} x_t
\]

(11)

This specification assures that from the point of the view of a firm 1, \(q_{2t} \) is an exogenous process.

Here

- \(\tilde{q}_{1t}, \tilde{x}_t \) play the role of Big K.
- \(q_{1t}, x_t \) play the role of little k.

The time \(t \) component of firm 1’s objective is

\[
\begin{bmatrix} q_{2t} \\ \tilde{q}_{1t} \\ \tilde{x}_t \\ q_{1t} \end{bmatrix} '
\begin{bmatrix} 0 & 0 & 0 & \frac{a_0}{2} \\ 0 & 0 & 0 & \frac{a_1}{2} \\ 0 & 0 & 0 & 0 \\ \frac{a_0}{2} & - \frac{a_1}{2} & 0 & 0 \end{bmatrix}
\begin{bmatrix} 1 \\ q_{2t} \\ \tilde{q}_{1t} \\ \tilde{x}_t \\ q_{1t} \end{bmatrix} - \gamma x_t^2
\]

Firm 1’s optimal decision rule is

\[x_t = -\tilde{F}X_t \]

and it’s state evolves according to

\[\tilde{X}_{t+1} = (\tilde{A} - \tilde{B}\tilde{F})X_t \]

under its optimal decision rule.

Later we shall compute \(\tilde{F} \) and verify that when we set

\[X_0 = \begin{bmatrix} 1 \\ q_{20} \\ q_{10} \\ x_0 \\ q_{10} \end{bmatrix} \]

we recover

\[x_0 = -\tilde{F}\tilde{X}_0 \]

which will verify that we have properly set up a recursive representation of the follower’s problem facing the Stackelberg leader’s \(\tilde{q}_2 \).
5.4 Time Consistency of Follower’s Plan

Since the follower can solve its problem using dynamic programming its problem is recursive in what for it are the natural state variables, namely

\[
\begin{bmatrix}
1 \\
q_{st} \\
\tilde{q}_{10} \\
\tilde{x}_{0}
\end{bmatrix}
\]

It follows that the follower’s plan is time consistent.

6 Computing the Stackelberg Plan

Here is our code to compute a Stackelberg plan via a linear-quadratic dynamic program as outlined above

```
In [1]: using InstantiateFromURL
github_project("QuantEcon/quantecon-notebooks-julia", version = "0.5.0")
  # github_project("QuantEcon/quantecon-notebooks-julia", version = "0.5.0",
  instantiate = true) # uncomment to force package installation

In [2]: using QuantEcon, Plots, LinearAlgebra, Statistics, Parameters, Random

We define named tuples and default values for the model and solver settings, and instantiate one copy of each

```

```
In [3]: model = @with_kw (a0 = 10,
    a1 = 2,
    β = 0.96,
    γ = 120.,
    n = 300)
    # things like tolerances, etc.
settings = @with_kw (tol0 = 1e-8,
    tol1 = 1e-16,
    tol2 = 1e-2)

defaultModel = model();
defaultSettings = settings();

Now we can compute the actual policy using the LQ routine from QuantEcon.jl

```

```
In [4]: @unpack a0, a1, β, γ, n = defaultModel
    @unpack tol0, tol1, tol2 = defaultSettings

    βs = [β^x for x = 0:n-1]
    Alhs = I + zeros(4, 4);
    Alhs[4, :] = [β * a0 / (2 * γ), -β * a1 / (2 * γ), -β * a1 / γ, β] # Euler equation

```

coefficients
Arhs = I + zeros(4, 4);
Arhs[3, 4] = 1.;
Alhsinv = inv(Alhs);

A = Alhsinv * Arhs;
B = Alhsinv * [0, 1, 0, 0,];
R = [0 -a0/2 0 0; -a0/2 a1 a1/2 0; 0 a1/2 0 0; 0 0 0 0];
Q = γ;
lq = QuantEcon.LQ(Q, R, A, B, bet=β);
P, F, d = stationary_values(lq);

P22 = P[4:end, 4:end];
P21 = P[4:end, 1:3];
P22inv = inv(P22);
H_0_0 = -P22inv * P21;

simulate forward
π_leader = zeros(n);
z0 = [1, 1, 1];
x0 = H_0_0 * z0;
y0 = vcat(z0, x0);
Random.seed!(1) # for reproducibility
yt, ut = compute_sequence(lq, y0, n);
π_matrix = R + F' * Q * F;

for t in 1:n
 π_leader[t] = -(yt[:, t]' * π_matrix * yt[:, t]);
end
println("Computed policy for Stackelberg leader: \$F")

Computed policy for Stackelberg leader: [-1.5800445387726552 0.294613127470314 0.6748993766774969 6.539705936147513]

6.1 Implied Time Series for Price and Quantities

The following code plots the price and quantities

In [5]: q_leader = yt[2, 1:end];
q_follower = yt[3, 1:end];
q = q_leader + q_follower;
p = a0 .- a1*q;

plot(1:n+1, [q_leader, q_follower, p],
title = "Output and Prices, Stackelberg Duopoly",
labels = ["leader output", "follower output", "price"],
xlabel = "t"

Out[5]:
6.2 Value of Stackelberg Leader

We’ll compute the present value earned by the Stackelberg leader.

We’ll compute it two ways (they give identical answers – just a check on coding and thinking)

\[
\text{v}_{\text{leader _ forward}} = \text{sum}(\beta \cdot \pi_{\text{leader}});
\]

\[
\text{v}_{\text{leader _ direct}} = -y_t[:, 1]' \cdot P \cdot y_t[:, 1];
\]

```python
println("v_{leader \_ forward (forward sim) is }$v_{leader \_ forward}"")
println("v_{leader \_ direct is }$v_{leader \_ direct}"")

v_{leader \_ forward (forward sim) is 150.0316212532548
v_{leader \_ direct is 150.03237147548847
```

In [7]: # manually check whether P is an approximate fixed point

\[
P_{\text{next}} = (R + F' \cdot Q \cdot F + \beta \cdot (A - B \cdot F)' \cdot P \cdot (A - B \cdot F));
\]

```python
all(P - P_{\text{next}}. < tolo)
```

Out[7]: true

In [8]: # manually checks whether two different ways of computing the

\[
\text{value function give approximately the same answer}
\]

\[
v_{\text{expanded}} = -(((y0' \cdot R \cdot y0 + u_t[:, 1]' \cdot Q \cdot u_t[:, 1] + \beta \cdot (y0' \cdot (A - B \cdot F)' \cdot P \cdot (A - B \cdot F) \cdot y0)));
\]

```python
(v_{leader \_ direct - v_{expanded} < tolo}[1, 1]
```

Out[8]: true

7 Exhibiting Time Inconsistency of Stackelberg Plan

In the code below we compare two values

- the continuation value \(-y_t P y_t\) earned by a continuation Stackelberg leader who inherits state \(y_t\) at \(t\)
- the value of a reborn Stackelberg leader who inherits state \(z_t\) at \(t\) and sets \(x_t = -P_{22}^{-1} P_{21}\)

The difference between these two values is a tell-tale time of the time inconsistency of the Stackelberg plan

In [9]: # Compute value function over time with reset at time t

\[
\text{vt}_{\text{leader}} = \text{zeros}(n);
\]

\[
\text{vt}_{\text{reset _ leader}} = \text{similar(vt }_{\text{leader}});
\]

\[
\text{yt}_{\text{reset}} = \text{copy(yt)}
\]

\[
\text{yt}_{\text{reset[end, :]} = (H_{0 _ 0} \cdot yt[1:3, :])}
\]

```python
for t in 1:n
    vt_{leader}[t] = -yt[:, t]' * P * yt[:, t]
    vt_{reset \_ leader[t] = -yt_{reset[:, t]' * P * yt_{reset[:, t]}
```

end

16
We now formulate and compute the recursive version of the follower’s problem.

We check that the recursive Big K, little k formulation of the follower’s problem produces the same output path \vec{q}_1 that we computed when we solved the Stackelberg problem.

```
In[10]: A = I + zeros(5, 5);
    R = [0 0 0 0 -a0/2; 0 0 0 a1/2; 0 0 0 0; 0 0 0 0; -a0/2 a1/2 0 0 a1];
    Q = Q;
    B = [0, 0, 0, 0, 1];

    lq_tilde = QuantEcon.LQ(Q, R, A, B, bet=beta);
    P, F, d = stationary_values(lq_tilde);
    y0_tilde = vcat(y0, y0[3]);
    yt_tilde = compute_sequence(lq_tilde, y0_tilde, n)[1];

In[11]: # checks that the recursive formulation of the follower's problem gives
# the same solution as the original Stackelberg problem
    plot(1:n+1, [yt_tilde[5, :], yt_tilde[3, :]], labels = ["q_tilde", "q"])
```

Out[11]:

Note: Variables with _tilde are obtained from solving the follower’s problem – those without are from the Stackelberg problem.

```
In[12]: # maximum absolute difference in quantities over time between the first
    and second
    solution methods
    max(abs(yt_tilde[5] - yt_tilde[3]))
```

Out[12]: 0.0

```
In[13]: # x0 == x0_tilde
    yt[; 1][end] - (yt_tilde[; 2] - yt_tilde[; 1])[end] < tol0
```

Out[13]: true
8.1 Explanation of Alignment

If we inspect the coefficients in the decision rule $-\tilde{F}$, we can spot the reason that the follower chooses to set $x_t = \tilde{x}_t$ when it sets $x_t = -\tilde{F}X_t$ in the recursive formulation of the follower problem.

Can you spot what features of \tilde{F} imply this?

Hint: remember the components of X_t

In [14]: \(\tilde{F} \) # policy function in the follower's problem

Out[14]: 1x5 Array{Float64,2}:
 2.5489e-17 -3.18612e-18 -0.103187 -1.0 0.103187

In [15]: \(P \) # value function in the Stackelberg problem

Out[15]: 4x4 Array{Float64,2}:
 963.541 -194.605 -511.622 -5258.23
 -194.605 37.3536 81.9771 784.765
 -511.622 81.9771 247.343 2517.05
 -5258.23 784.765 2517.05 25556.2

In [16]: \(P \) # value function in the follower's problem

Out[16]: 5x5 Array{Float64,2}:
 -18.1991 2.58003 15.6049 151.23 -5.0
 2.58003 -0.969466 -5.26008 -50.9764 1.0
 15.6049 -5.26008 -32.2759 -312.792 -12.3824
 151.23 -50.9764 -312.792 -3031.33 -120.0
 -5.0 1.0 -12.3824 -120.0 14.3824

In [17]: # manually check that \(P \) is an approximate fixed point
 all((P - ((R + \tilde{F}^* Q \tilde{F}) + \beta \cdot (\tilde{A} - B \tilde{F})^* P \cdot (\tilde{A} - B \tilde{F})).< \text{tol0}))

Out[17]: true

In [18]: # compute \(P\) guess using \(\tilde{F}_{star} \)
\(F_{star} = -[0, 0, 0, 1, 0]' \);
\(P\) guess = zeros(5, 5);

 for i in 1:1000
 \(P\) guess = ((R + \tilde{F}_{star}' Q \tilde{F}_{star}) + \beta \cdot (\tilde{A} - B \tilde{F}_{star})' P \cdot (\tilde{A} - B \tilde{F}_{star}));
 end

In [19]: # value function in the follower's problem
 -(y0_tilde' P y0_tilde)[1, 1]
Out[19]: 112.65590740578102

In [20]: # value function using P_{guess}
 -(y0_tilde' * P_{guess} * y0_tilde)[1, 1]

Out[20]: 112.65590740578097

In [21]: # c policy using policy iteration algorithm
 F_iter = (β * inv(Q + β * B' * P_{guess} * B)
 * B' * P_{guess} * $Ā$);
 P_iter = zeros(5, 5);
 dist_vec = zeros(5, 5);

 for i in 1:100
 # compute P_{iter}
 dist_vec = similar(P_iter)
 for j in 1:1000
 P_iter = (R' + F_iter' * Q * F_iter) + β *
 ($Ā - B' * F_iter)' * P_iter *
 ($Ā - B' * F_iter);
 end
 # update F_{iter}
 F_iter = β * inv(Q + β * B' * P_iter * B) *
 B' * P_iter * $Ā$;
 dist_vec = P_iter - ((R' + F_iter' * Q * F_iter) +
 β * ($Ā - B' * F_iter)' * P_iter *
 ($Ā - B' * F_iter));
 end
 if maximum(abs(dist_vec)) < 1e-8
 dist_vec2 = F_iter - (β * inv(Q + β * B' * P_iter * B) * B' * P_iter * $Ā$)
 if maximum(abs(dist_vec2)) < 1e-8
 #of outer loop
 @show F_iter
 println("The policy didn't converge: try increasing the number of iterations")
 end
 else
 println("The policy didn't converge: try increasing the number of inner loop iterations")
 end

 F_iter = [0.0 -1.474514954580286e-17 -0.1031865014522383 -1.0000000000000007 0.10318650145223823]
9 Markov Perfect Equilibrium

The state vector is

\[
 z_t = \begin{bmatrix}
 1 \\
 q_{2t} \\
 q_{1t}
 \end{bmatrix}
\]

and the state transition dynamics are

\[
 z_{t+1} = Az_t + B_1 v_{1t} + B_2 v_{2t}
\]

where \(A \) is a 3 × 3 identity matrix and

\[
 B_1 = \begin{bmatrix}
 0 \\
 0 \\
 1
 \end{bmatrix}, \quad B_2 = \begin{bmatrix}
 0 \\
 1 \\
 0
 \end{bmatrix}
\]

The Markov perfect decision rules are

\[
 v_{1t} = -F_1 z_t, \quad v_{2t} = -F_2 z_t
\]

and in the Markov perfect equilibrium the state evolves according to

\[
 z_{t+1} = (A - B_1 F_1 - B_2 F_2) z_t
\]
In [24]: # in LQ form
 A = I + zeros(3, 3);
 B1 = [0, 0, 1];
 B2 = [0, 1, 0];
 R1 = [0 0 -a0/2; 0 0 a1/2; -a0/2 a1/2 a1];
 R2 = [0 -a0/2 0; -a0/2 a1 0; 0 a1/2 0];
 Q1 = Q2 = γ;
 S1 = S2 = W1 = W2 = M1 = M2 = 0.;

 # solve using nnash from QE
 F1, F2, P1, P2 = nnash(A, B1, B2, R1, R2, Q1, Q2, S1, S2, W1, W2, M1, M2, beta = β, tol = tol1);

 # simulate forward
 AF = A - B1 * F1 - B2 * F2;
 z = zeros(3, n);
 z[:, 1] = 1;
 for t in 1:n-1
 z[:, t+1] = AF * z[:, t]
 end

 println("Policy for F1 is \$F1")
 println("Policy for F2 is \$F2")

 Policy for F1 is [-0.22701362843207126 0.03129874118441059 0.09447112842804818]
 Policy for F2 is [-0.22701362843207126 0.09447112842804818 0.03129874118441059]

In [25]: q1 = z[2, :];
 q2 = z[3, :];
 q = q1 + q2; # total output, MPE
 p = a0 .- a1 * q; # total price, MPE
 plot([q, p], labels = ["total output", "total price"], title = "Output and prices,
 duopoly MPE", xlabel = "t")

Out[25]:

In [26]: # computes the maximum difference in quantities across firms
 maximum(abs.(q1 - q2))

Out[26]: 8.881784197001252e-16

In [27]: # compute values
 u1 = -F1 * z;
 u2 = -F2 * z;
 π_1 = (p .* q1)' - γ * u1.^2;
 π_2 = (p .* q2)' - γ * u2.^2;

 v1_forward = π_1 * βs;
 v2_forward = π_2 * βs;

 v1_direct = -z[:, 1]' * P1 * z[:, 1];
v2_direct = -z[:, 1]' * P2 * z[:, 1];

println("Firm 1: Direct is $v1_direct, Forward is $(v1_forward[1])");
println("Firm 2: Direct is $v2_direct, Forward is $(v2_forward[1])");

Firm 1: Direct is 133.3295555721595, Forward is 133.33033197956638
Firm 2: Direct is 133.32955557215945, Forward is 133.33033197956638

In [28]: # sanity check
 Δ_1 = A - B2 * F2;
lq1 = QuantEcon.LQ(Q1, R1, Δ_1, B1, bet = β);
P1_ih, F1_ih, d = stationary_values(lq1);

v2_direct_alt = -z[:, 1]' * P1_ih * z[:, 1] + d;
all(abs.(v2_direct - v2_direct_alt) < tol2)

Out[28]: true

10 MPE vs. Stackelberg

In [29]: vt_MPE = zeros(n);
 vt_follower = zeros(n);

 for t in 1:n
 vt_MPE[t] = -z[:, t]' * P1 * z[:, t];
 vt_follower[t] = -yt_tilde[:, t]' * P * yt_tilde[:, t];
 end

plot([vt_MPE, vt_leader, vt_follower], labels = ["MPE", "Stackelberg leader", "Stackelberg follower"], title = "MPE vs Stackelberg Values", xlabel = "t")

Out[29]:

In [30]: # display values
 println("vt_leader(y0) = $(vt_leader[1])");
 println("vt_follower(y0) = $(vt_follower[1])")
 println("vt_MPE(y0) = $(vt_MPE[1])");

 vt_leader(y0) = 150.03237147548847
 vt_follower(y0) = 112.65590740578102
 vt_MPE(y0) = 133.3295555721595

In [31]: # total difference in value b/t Stackelberg and MPE

Out[31]: -3.97083226300494877