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2 Overview

This lecture describes two types of consumption-smoothing and tax-smoothing models

• One is in the complete markets tradition of Lucas and Stokey [4].
• The other is in the incomplete markets tradition of Hall [3] and Barro [1].
• Complete markets* allow a consumer or government to buy or sell claims contingent on

all possible states of the world.
• Incomplete markets* allow a consumer or government to buy or sell only a limited set of

securities, often only a single risk-free security.

Hall [3] and Barro [1] both assumed that the only asset that can be traded is a risk-free one
period bond.

Hall assumed an exogenous stochastic process of nonfinancial income and an exogenous gross
interest rate on one period risk-free debt that equals 𝛽−1, where 𝛽 ∈ (0, 1) is also a con-
sumer’s intertemporal discount factor.

Barro [1] made an analogous assumption about the risk-free interest rate in a tax-smoothing
model that we regard as isomorphic to Hall’s consumption-smoothing model.

We maintain Hall and Barro’s assumption about the interest rate when we describe an incom-
plete markets version of our model.

In addition, we extend their assumption about the interest rate to an appropriate counterpart
that we use in a “complete markets” model in the style of Lucas and Stokey [4].

While we are equally interested in consumption-smoothing and tax-smoothing models, for the
most part we focus explicitly on consumption-smoothing versions of these models.
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But for each version of the consumption-smoothing model there is a natural tax-smoothing
counterpart obtained simply by

• relabeling consumption as tax collections and nonfinancial income as government expen-
ditures

• relabeling the consumer’s debt as the government’s assets

For elaborations on this theme, please see Optimal Savings II: LQ Techniques and later parts
of this lecture.

We’ll consider two closely related alternative assumptions about the consumer’s exogenous
nonfinancial income process (or in the tax-smoothing interpretation, the government’s exoge-
nous expenditure process):

• that it obeys a finite 𝑁 state Markov chain (setting 𝑁 = 2 most of the time)
• that it is described by a linear state space model with a continuous state vector in ℝ𝑛

driven by a Gaussian vector iid shock process

We’ll spend most of this lecture studying the finite-state Markov specification, but will briefly
treat the linear state space specification before concluding.

2.1 Relationship to Other Lectures

This lecture can be viewed as a followup to Optimal Savings II: LQ Techniques and a warm
up for a model of tax smoothing described in opt_tax_recur.

Linear-quadratic versions of the Lucas-Stokey tax-smoothing model are described in lqram-
sey.

The key differences between those lectures and this one are

• Here the decision maker takes all prices as exogenous, meaning that his decisions do not
affect them.

• In lqramsey and opt_tax_recur, the decision maker – the government in the case of
these lectures – recognizes that his decisions affect prices.

So these later lectures are partly about how the government should manipulate prices of gov-
ernment debt.

3 Background

Outcomes in consumption-smoothing (or tax-smoothing) models emerge from two sources:

• a decision maker – a consumer in the consumption-smoothing model or a government
in the tax-smoothing model – who wants to maximize an intertemporal objective func-
tion that expresses its preference for paths of consumption (or tax collections) that are
smooth in the sense of not varying across time and Markov states

• a set of trading opportunities that allow the optimizer to transform a possibly erratic
nonfinancial income (or government expenditure) process into a smoother consumption
(or tax collections) process by purchasing or selling financial securities

In the complete markets version of the model, each period the consumer can buy or sell one-
period ahead state-contingent securities whose payoffs depend on next period’s realization of
the Markov state.

In the two-state Markov chain case, there are two such securities each period.
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In an 𝑁 state Markov state version of the model, 𝑁 such securities are traded each period.

These state-contingent securities are commonly called Arrow securities, after Kenneth Arrow
who first theorized about them.

In the incomplete markets version of the model, the consumer can buy and sell only one secu-
rity each period, a risk-free bond with gross return 𝛽−1.

3.1 Finite State Markov Income Process

In each version of the consumption-smoothing model, nonfinancial income is governed by a
two-state Markov chain (it’s easy to generalize this to an 𝑁 state Markov chain).

In particular, the state of the world is given by 𝑠𝑡 that follows a Markov chain with transition
probability matrix

𝑃𝑖𝑗 = ℙ{𝑠𝑡+1 = ̄𝑠𝑗 | 𝑠𝑡 = ̄𝑠𝑖}

Nonfinancial income {𝑦𝑡} obeys

𝑦𝑡 = { ̄𝑦1 if 𝑠𝑡 = ̄𝑠1
̄𝑦2 if 𝑠𝑡 = ̄𝑠2

A consumer wishes to maximize

𝔼 [
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)] where 𝑢(𝑐𝑡) = −(𝑐𝑡 − 𝛾)2 and 0 < 𝛽 < 1 (1)

3.1.1 Remark About Isomorphism

We can regard these as Barro [1] tax-smoothing models if we set 𝑐𝑡 = 𝑇𝑡 and 𝐺𝑡 = 𝑦𝑡, where
𝑇𝑡 is total tax collections and {𝐺𝑡} is an exogenous government expenditures process.

3.2 Market Structure

The two models differ in how effectively the market structure allows the consumer to trans-
fer resources across time and Markov states, there being more transfer opportunities in the
complete markets setting than in the incomplete markets setting.

Watch how these differences in opportunities affect

• how smooth consumption is across time and Markov states
• how the consumer chooses to make his levels of indebtedness behave over time and

across Markov states
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4 Model 1 (Complete Markets)

At each date 𝑡 ≥ 0, the consumer trades one-period ahead Arrow securities.

We assume that prices of these securities are exogenous to the consumer (or in the tax-
smoothing version of the model, to the government).

Exogenous means that they are unaffected by the decision maker.

In Markov state 𝑠𝑡 at time 𝑡, one unit of consumption in state 𝑠𝑡+1 at time 𝑡 + 1 costs
𝑞(𝑠𝑡+1 | 𝑠𝑡) units of the time 𝑡 consumption good.

At time 𝑡 = 0, the consumer starts with an inherited level of debt due at time 0 of 𝑏0 units of
time 0 consumption goods.

The consumer’s budget constraint at 𝑡 ≥ 0 in Markov state 𝑠𝑡 is

𝑐𝑡 + 𝑏𝑡 ≤ 𝑦(𝑠𝑡) + ∑
𝑗

𝑞( ̄𝑠𝑗 | 𝑠𝑡) 𝑏𝑡+1( ̄𝑠𝑗 | 𝑠𝑡)

where 𝑏𝑡 is the consumer’s one-period debt that falls due at time 𝑡 and 𝑏𝑡+1( ̄𝑠𝑗 | 𝑠𝑡) are the
consumer’s time 𝑡 sales of the time 𝑡 + 1 consumption good in Markov state ̄𝑠𝑗, a source of
time 𝑡 revenues.
An analogue of Hall’s assumption that the one-period risk-free gross interest rate is 𝛽−1 is

𝑞( ̄𝑠𝑗 | ̄𝑠𝑖) = 𝛽𝑃𝑖𝑗 (2)

To understand this, observe that in state ̄𝑠𝑖 it costs ∑𝑗 𝑞( ̄𝑠𝑗 | ̄𝑠𝑖) to purchase one unit of con-
sumption next period for sure, i.e., meaning no matter what state of the world occurs at 𝑡+1.
Hence the implied price of a risk-free claim on one unit of consumption next period is

∑
𝑗

𝑞( ̄𝑠𝑗 | ̄𝑠𝑖) = ∑
𝑗

𝛽𝑃𝑖𝑗 = 𝛽

This confirms that (2) is a natural analogue of Hall’s assumption about the risk-free one-
period interest rate.

First-order necessary conditions for maximizing the consumer’s expected utility are

𝛽 𝑢′(𝑐𝑡+1)
𝑢′(𝑐𝑡)

ℙ{𝑠𝑡+1 | 𝑠𝑡} = 𝑞(𝑠𝑡+1 | 𝑠𝑡)

or, under our assumption (2) on Arrow security prices,

𝑐𝑡+1 = 𝑐𝑡 (3)

Thus, our consumer sets 𝑐𝑡 = ̄𝑐 for all 𝑡 ≥ 0 for some value ̄𝑐 that it is our job now to deter-
mine.

Guess: We’ll make the plausible guess that

𝑏𝑡+1( ̄𝑠𝑗 | 𝑠𝑡 = ̄𝑠𝑖) = 𝑏( ̄𝑠𝑗), 𝑖 = 1, 2; 𝑗 = 1, 2 (4)
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so that the amount borrowed today turns out to depend only on tomorrow’s Markov state.
(Why is this is a plausible guess?).
To determine ̄𝑐, we shall pursue the implications of the consumer’s budget constraints in each
Markov state today and our guess (4) about the consumer’s debt level choices.
For 𝑡 ≥ 1, these imply

̄𝑐 + 𝑏( ̄𝑠1) = 𝑦( ̄𝑠1) + 𝑞( ̄𝑠1 | ̄𝑠1)𝑏( ̄𝑠1) + 𝑞( ̄𝑠2 | ̄𝑠1)𝑏( ̄𝑠2)
̄𝑐 + 𝑏( ̄𝑠2) = 𝑦( ̄𝑠2) + 𝑞( ̄𝑠1 | ̄𝑠2)𝑏( ̄𝑠1) + 𝑞( ̄𝑠2 | ̄𝑠2)𝑏( ̄𝑠2), (5)

or

[𝑏( ̄𝑠1)
𝑏( ̄𝑠2)] + [ ̄𝑐

̄𝑐] = [𝑦( ̄𝑠1)
𝑦( ̄𝑠2)] + 𝛽 [𝑃11 𝑃12

𝑃21 𝑃22
] [𝑏( ̄𝑠1)

𝑏( ̄𝑠2)]

These are 2 equations in the 3 unknowns ̄𝑐, 𝑏( ̄𝑠1), 𝑏( ̄𝑠2).
To get a third equation, we assume that at time 𝑡 = 0, 𝑏0 is the debt due; and we assume that
at time 𝑡 = 0, the Markov state is ̄𝑠1.
Then the budget constraint at time 𝑡 = 0 is

̄𝑐 + 𝑏0 = 𝑦( ̄𝑠1) + 𝑞( ̄𝑠1 | ̄𝑠1)𝑏( ̄𝑠1) + 𝑞( ̄𝑠2 | ̄𝑠1)𝑏( ̄𝑠2) (6)

If we substitute (6) into the first equation of (5) and rearrange, we discover that

𝑏( ̄𝑠1) = 𝑏0 (7)

We can then use the second equation of (5) to deduce the restriction

𝑦( ̄𝑠1) − 𝑦( ̄𝑠2) + [𝑞( ̄𝑠1 | ̄𝑠1) − 𝑞( ̄𝑠1 | ̄𝑠2) − 1]𝑏0 + [𝑞( ̄𝑠2 | ̄𝑠1) + 1 − 𝑞( ̄𝑠2 | ̄𝑠2)]𝑏( ̄𝑠2) = 0, (8)

an equation in the unknown 𝑏( ̄𝑠2).
Knowing 𝑏( ̄𝑠1) and 𝑏( ̄𝑠2), we can solve equation (6) for the constant level of consumption ̄𝑐.

4.1 Key outcomes

The preceding calculations indicate that in the complete markets version of our model, we
obtain the following striking results:

• The consumer chooses to make consumption perfectly constant across time and Markov
states.

We computed the constant level of consumption ̄𝑐 and indicated how that level depends on
the underlying specifications of preferences, Arrow securities prices, the stochastic process of
exogenous nonfinancial income, and the initial debt level 𝑏0

• The consumer’s debt neither accumulates, nor decumulates, nor drifts. Instead the debt
level each period is an exact function of the Markov state, so in the two-state Markov
case, it switches between two values.

• We have verified guess (4).
We computed how one of those debt levels depends entirely on initial debt – it equals it – and
how the other value depends on virtually all remaining parameters of the model.
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4.2 Code

Here’s some code that, among other things, contains a function called consump-
tion_complete().

This function computes 𝑏( ̄𝑠1), 𝑏( ̄𝑠2), ̄𝑐 as outcomes given a set of parameters, under the as-
sumption of complete markets.

4.3 Setup

In [1]: using InstantiateFromURL
# optionally add arguments to force installation: instantiate = true,�

↪precompile = true
github_project("QuantEcon/quantecon-notebooks-julia", version = "0.8.0")

In [2]: using LinearAlgebra, Statistics
using Parameters, Plots, QuantEcon, Random
gr(fmt = :png);

In [3]: ConsumptionProblem = @with_kw (β = 0.96,
y = [2.0, 1.5],
b0 = 3.0,
P = [0.8 0.2

0.4 0.6])

function consumption_complete(cp)

@unpack β, P, y, b0 = cp # Unpack

y1, y2 = y # extract income levels
b1 = b0 # b1 is known to be equal to b0
Q = β * P # assumed price system

# Using equation (7) calculate b2
b2 = (y2 - y1 - (Q[1, 1] - Q[2, 1] - 1) * b1) / (Q[1, 2] + 1 - Q[2, 2])

# Using equation (5) calculae c
�

c
�
= y1 - b0 + ([b1 b2] * Q[1, :])[1]

return c
�
, b1, b2

end

function consumption_incomplete(cp; N_simul = 150)

@unpack β, P, y, b0 = cp # unpack

# for the simulation use the MarkovChain type
mc = MarkovChain(P)

# useful variables
y = y
v = inv(I - β * P) * y

# simulate state path
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s_path = simulate(mc, N_simul, init=1)

# store consumption and debt path
b_path, c_path = ones(N_simul + 1), ones(N_simul)
b_path[1] = b0

# optimal decisions from (12) and (13)
db = ((1 - β) * v - y) / β

for (i, s) in enumerate(s_path)
c_path[i] = (1 - β) * (v[s, 1] - b_path[i])
b_path[i + 1] = b_path[i] + db[s, 1]

end

return c_path, b_path[1:end - 1], y[s_path], s_path
end

Out[3]: consumption_incomplete (generic function with 1 method)

Let’s test by checking that ̄𝑐 and 𝑏2 satisfy the budget constraint

In [4]: cp = ConsumptionProblem()

c
�
, b1, b2 = consumption_complete(cp)

debt_complete = [b1, b2]

isapprox((c
�
+ b2 - cp.y[2] - debt_complete' * (cp.β * cp.P)[2, :])[1], 0)

Out[4]: true

Below, we’ll take the outcomes produced by this code – in particular the implied consumption
and debt paths – and compare them with outcomes from an incomplete markets model in the
spirit of Hall [3] and Barro [1] (and also, for those who love history, Gallatin (1807) [2]).

5 Model 2 (One-Period Risk Free Debt Only)

This is a version of the original models of Hall (1978) and Barro (1979) in which the decision
maker’s ability to substitute intertemporally is constrained by his ability to buy or sell only
one security, a risk-free one-period bond bearing a constant gross interest rate that equals
𝛽−1.

Given an initial debt 𝑏0 at time 0, the consumer faces a sequence of budget constraints

𝑐𝑡 + 𝑏𝑡 = 𝑦𝑡 + 𝛽𝑏𝑡+1, 𝑡 ≥ 0

where 𝛽 is the price at time 𝑡 of a risk-free claim on one unit of time consumption at time
𝑡 + 1.
First-order conditions for the consumer’s problem are

∑
𝑗

𝑢′(𝑐𝑡+1,𝑗)𝑃𝑖𝑗 = 𝑢′(𝑐𝑡,𝑖)
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For our assumed quadratic utility function this implies

∑
𝑗

𝑐𝑡+1,𝑗𝑃𝑖𝑗 = 𝑐𝑡,𝑖, (9)

which is Hall’s (1978) conclusion that consumption follows a random walk.

As we saw in our first lecture on the permanent income model, this leads to

𝑏𝑡 = 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗 − (1 − 𝛽)−1𝑐𝑡 (10)

and

𝑐𝑡 = (1 − 𝛽) [𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗 − 𝑏𝑡] . (11)

Equation (11) expresses 𝑐𝑡 as a net interest rate factor 1 − 𝛽 times the sum of the expected
present value of nonfinancial income 𝔼𝑡 ∑∞

𝑗=0 𝛽𝑗𝑦𝑡+𝑗 and financial wealth −𝑏𝑡.

Substituting (11) into the one-period budget constraint and rearranging leads to

𝑏𝑡+1 − 𝑏𝑡 = 𝛽−1 [(1 − 𝛽)𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗 − 𝑦𝑡] (12)

Now let’s do a useful calculation that will yield a convenient expression for the key term
𝔼𝑡 ∑∞

𝑗=0 𝛽𝑗𝑦𝑡+𝑗 in our finite Markov chain setting.

Define

𝑣𝑡 ∶= 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗

In our finite Markov chain setting, 𝑣𝑡 = 𝑣(1) when 𝑠𝑡 = ̄𝑠1 and 𝑣𝑡 = 𝑣(2) when 𝑠𝑡 = ̄𝑠2.

Therefore, we can write

𝑣(1) = 𝑦(1) + 𝛽𝑃11𝑣(1) + 𝛽𝑃12𝑣(2)
𝑣(2) = 𝑦(2) + 𝛽𝑃21𝑣(1) + 𝛽𝑃22𝑣(2)

or

⃗𝑣 = ⃗𝑦 + 𝛽𝑃 ⃗𝑣

where ⃗𝑣 = [𝑣(1)
𝑣(2)] and ⃗𝑦 = [𝑦(1)

𝑦(2)].

We can also write the last expression as

⃗𝑣 = (𝐼 − 𝛽𝑃)−1 ⃗𝑦
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In our finite Markov chain setting, from expression (11), consumption at date 𝑡 when debt is
𝑏𝑡 and the Markov state today is 𝑠𝑡 = 𝑖 is evidently

𝑐(𝑏𝑡, 𝑖) = (1 − 𝛽) ([(𝐼 − 𝛽𝑃)−1 ⃗𝑦]𝑖 − 𝑏𝑡) (13)

and the increment in debt is

𝑏𝑡+1 − 𝑏𝑡 = 𝛽−1[(1 − 𝛽)𝑣(𝑖) − 𝑦(𝑖)] (14)

5.1 Summary of Outcomes

In contrast to outcomes in the complete markets model, in the incomplete markets model

• consumption drifts over time as a random walk; the level of consumption at time 𝑡 de-
pends on the level of debt that the consumer brings into the period as well as the ex-
pected discounted present value of nonfinancial income at 𝑡

• the consumer’s debt drifts upward over time in response to low realizations of nonfinan-
cial income and drifts downward over time in response to high realizations of nonfinan-
cial income

• the drift over time in the consumer’s debt and the dependence of current consumption
on today’s debt level account for the drift over time in consumption

5.2 The Incomplete Markets Model

The code above also contains a function called consumption_incomplete() that uses (13) and
(14) to

• simulate paths of 𝑦𝑡, 𝑐𝑡, 𝑏𝑡+1
• plot these against values of of ̄𝑐, 𝑏(𝑠1), 𝑏(𝑠2) found in a corresponding complete markets

economy

Let’s try this, using the same parameters in both complete and incomplete markets economies

In [5]: Random.seed!(42)
N_simul = 150
cp = ConsumptionProblem()

c
�
, b1, b2 = consumption_complete(cp)

debt_complete = [b1, b2]

c_path, debt_path, y_path, s_path = consumption_incomplete(cp,�
↪N_simul=N_simul)

plt_cons = plot(title = "Consumption paths", xlabel = "Periods", ylim = [1.
↪4,2.1])

plot!(plt_cons, 1:N_simul, c_path, label = "incomplete market", lw = 2)

plot!(plt_cons, 1:N_simul, fill(c
�
, N_simul), label = "complete market", lw�

↪= 2)
plot!(plt_cons, 1:N_simul, y_path, label = "income", lw = 2, alpha = 0.6,�

↪linestyle =
:dash)
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plot!(plt_cons, legend = :bottom)

plt_debt = plot(title = "Debt paths", xlabel = "Periods")
plot!(plt_debt, 1:N_simul, debt_path, label = "incomplete market")
plot!(plt_debt, 1:N_simul, debt_complete[s_path], label = "complete�

↪market", lw = 2)
plot!(plt_debt, 1:N_simul, y_path, label = "income", lw = 2, alpha = 0.6,�

↪linestyle =
:dash)
plot!(plt_debt, legend = :bottomleft)

plot(plt_cons, plt_debt, layout = (1,2), size = (800, 400))

Out[5]:

In the graph on the left, for the same sample path of nonfinancial income 𝑦𝑡, notice that

• consumption is constant when there are complete markets, but it takes a random walk
in the incomplete markets version of the model

• the consumer’s debt oscillates between two values that are functions of the Markov state
in the complete markets model, while the consumer’s debt drifts in a “unit root” fashion
in the incomplete markets economy

5.2.1 Using the Isomorphism

We can simply relabel variables to acquire tax-smoothing interpretations of our two models

In [6]: plt_tax = plot(title = "Tax collection paths", x_label = "Periods", ylim =�
↪[1.4,2.1])

plot!(plt_tax, 1:N_simul, c_path, label = "incomplete market", lw = 2)

plot!(plt_tax, 1:N_simul, fill(c
�
, N_simul), label = "complete market", lw�

↪= 2)
plot!(plt_tax, 1:N_simul, y_path, label = "govt expenditures", alpha = .6,�

↪linestyle =
:dash,
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lw = 2)

plt_gov = plot(title = "Government assets paths", x_label = "Periods")
plot!(plt_gov, 1:N_simul, debt_path, label = "incomplete market", lw = 2)
plot!(plt_gov, 1:N_simul, debt_complete[s_path], label = "complete�

↪market", lw = 2)
plot!(plt_gov, 1:N_simul, y_path, label = "govt expenditures", alpha = .6,�

↪linestyle =
:dash,

lw = 2)
hline!(plt_gov, [0], linestyle = :dash, color = :black, lw = 2, label = "")
plot(plt_tax, plt_gov, layout = (1,2), size = (800, 400))

Out[6]:

6 Example: Tax Smoothing with Complete Markets

It is useful to focus on a simple tax-smoothing example with complete markets.

This example will illustrate how, in a complete markets model like that of Lucas and Stokey
[4], the government purchases insurance from the private sector.

• Purchasing insurance protects the government against the need to raise taxes
too high or issue too much debt in the high government expenditure event.

We assume that government expenditures move between two values 𝐺1 < 𝐺2, where Markov
state 1 means “peace” and Markov state 2 means “war”.

The government budget constraint in Markov state 𝑖 is

𝑇𝑖 + 𝑏𝑖 = 𝐺𝑖 + ∑
𝑗

𝑄𝑖𝑗𝑏𝑗

where
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𝑄𝑖𝑗 = 𝛽𝑃𝑖𝑗

is the price of one unit of output next period in state 𝑗 when today’s Markov state is 𝑖 and 𝑏𝑖
is the government’s level of assets in Markov state 𝑖.
That is, 𝑏𝑖 is the amount of the one-period loans owned by the government that fall due at
time 𝑡.
As above, we’ll assume that the initial Markov state is state 1.
In addition, to simplify our example, we’ll set the government’s initial asset level to 0, so that
𝑏1 = 0.
Here’s our code to compute a quantitative example with zero debt in peace time:

In [7]: # Parameters

β = .96
y = [1.0, 2.0]
b0 = 0.0
P = [0.8 0.2;

0.4 0.6]

cp = ConsumptionProblem(β, y, b0, P)
Q = β * P
N_simul = 150

c
�
, b1, b2 = consumption_complete(cp)

debt_complete = [b1, b2]

println("P = $P")
println("Q = $Q")
println("Govt expenditures in peace and war = $y")

println("Constant tax collections = $c
�
")

println("Govt assets in two states = $debt_complete")

msg = """
Now let's check the government's budget constraint in peace and war.
Our assumptions imply that the government always purchases 0 units of the
Arrow peace security.
"""
println(msg)

AS1 = Q[1, 2] * b2
println("Spending on Arrow war security in peace = $AS1")
AS2 = Q[2, 2] * b2
println("Spending on Arrow war security in war = $AS2")

println("\n")
println("Government tax collections plus asset levels in peace and war")

TB1 = c
�
+ b1

println("T+b in peace = $TB1")

TB2 = c
�
+ b2

println("T+b in war = $TB2")
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println("\n")
println("Total government spending in peace and war")
G1= y[1] + AS1
G2 = y[2] + AS2
println("total govt spending in peace = $G1")
println("total govt spending in war = $G2")

println("\n")
println("Let's see ex post and ex ante returns on Arrow securities")

Π = 1 ./ Q # reciprocal(Q)
exret = Π
println("Ex post returns to purchase of Arrow securities = $exret")
exant = Π .* P
println("Ex ante returns to purchase of Arrow securities = $exant")

P = [0.8 0.2; 0.4 0.6]
Q = [0.768 0.192; 0.384 0.576]
Govt expenditures in peace and war = [1.0, 2.0]
Constant tax collections = 1.3116883116883118
Govt assets in two states = [0.0, 1.6233766233766234]
Now let's check the government's budget constraint in peace and war.
Our assumptions imply that the government always purchases 0 units of the
Arrow peace security.

Spending on Arrow war security in peace = 0.3116883116883117
Spending on Arrow war security in war = 0.9350649350649349

Government tax collections plus asset levels in peace and war
T+b in peace = 1.3116883116883118
T+b in war = 2.9350649350649354

Total government spending in peace and war
total govt spending in peace = 1.3116883116883118
total govt spending in war = 2.935064935064935

Let's see ex post and ex ante returns on Arrow securities
Ex post returns to purchase of Arrow securities = [1.3020833333333333
5.208333333333333; 2.6041666666666665 1.7361111111111112]
Ex ante returns to purchase of Arrow securities = [1.0416666666666667
1.0416666666666667; 1.0416666666666667 1.0416666666666667]

6.1 Explanation

In this example, the government always purchase 0 units of the Arrow security that pays off
in peace time (Markov state 1).
But it purchases a positive amount of the security that pays off in war time (Markov state 2).
We recommend plugging the quantities computed above into the government budget con-
straints in the two Markov states and staring.

This is an example in which the government purchases insurance against the possibility that
war breaks out or continues

• the insurance does not pay off so long as peace continues

13



• the insurance pays off when there is war

Exercise: try changing the Markov transition matrix so that

𝑃 = [1 0
.2 .8]

Also, start the system in Markov state 2 (war) with initial government assets −10, so that the
government starts the war in debt and 𝑏2 = −10.

7 Linear State Space Version of Complete Markets Model

Now we’ll use a setting like that in first lecture on the permanent income model.

In that model, there were

• incomplete markets: the consumer could trade only a single risk-free one-period bond
bearing gross one-period risk-free interest rate equal to 𝛽−1

• the consumer’s exogenous nonfinancial income was governed by a linear state space
model driven by Gaussian shocks, the kind of model studied in an earlier lecture about
linear state space models

We’ll write down a complete markets counterpart of that model.

So now we’ll suppose that nonfinancial income is governed by the state space system

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝑆𝑦𝑥𝑡

where 𝑥𝑡 is an 𝑛 × 1 vector and 𝑤𝑡+1 ∼ 𝑁(0, 𝐼) is IID over time.

Again, as a counterpart of the Hall-Barro assumption that the risk-free gross interest rate is
𝛽−1, we assume the scaled prices of one-period ahead Arrow securities are

𝑝𝑡+1(𝑥𝑡+1 | 𝑥𝑡) = 𝛽𝜙(𝑥𝑡+1 | 𝐴𝑥𝑡, 𝐶𝐶′) (15)

where 𝜙(⋅ | 𝜇, Σ) is a multivariate Gaussian distribution with mean vector 𝜇 and covariance
matrix Σ.

Let 𝑏(𝑥𝑡+1) be a vector of state-contingent debt due at 𝑡 + 1 as a function of the 𝑡 + 1 state
𝑥𝑡+1.

Using the pricing function assumed in (15), the value at 𝑡 of 𝑏(𝑥𝑡+1) is

𝛽 ∫ 𝑏(𝑥𝑡+1)𝜙(𝑥𝑡+1 | 𝐴𝑥𝑡, 𝐶𝐶′)𝑑𝑥𝑡+1 = 𝛽𝔼𝑡𝑏𝑡+1

In the complete markets setting, the consumer faces a sequence of budget constraints

𝑐𝑡 + 𝑏𝑡 = 𝑦𝑡 + 𝛽𝔼𝑡𝑏𝑡+1, 𝑡 ≥ 0

We can solve the time 𝑡 budget constraint forward to obtain
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𝑏𝑡 = 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗(𝑦𝑡+𝑗 − 𝑐𝑡+𝑗)

We assume as before that the consumer cares about the expected value of

∞
∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡), 0 < 𝛽 < 1

In the incomplete markets version of the model, we assumed that 𝑢(𝑐𝑡) = −(𝑐𝑡 − 𝛾)2, so that
the above utility functional became

−
∞

∑
𝑡=0

𝛽𝑡(𝑐𝑡 − 𝛾)2, 0 < 𝛽 < 1

But in the complete markets version, we can assume a more general form of utility function
that satisfies 𝑢′ > 0 and 𝑢″ < 0.
The first-order condition for the consumer’s problem with complete markets and our assump-
tion about Arrow securities prices is

𝑢′(𝑐𝑡+1) = 𝑢′(𝑐𝑡) for all 𝑡 ≥ 0

which again implies 𝑐𝑡 = ̄𝑐 for some ̄𝑐.
So it follows that

𝑏𝑡 = 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗(𝑦𝑡+𝑗 − ̄𝑐)

or

𝑏𝑡 = 𝑆𝑦(𝐼 − 𝛽𝐴)−1𝑥𝑡 − 1
1 − 𝛽 ̄𝑐 (16)

where the value of ̄𝑐 satisfies

�̄�0 = 𝑆𝑦(𝐼 − 𝛽𝐴)−1𝑥0 − 1
1 − 𝛽 ̄𝑐 (17)

where �̄�0 is an initial level of the consumer’s debt, specified as a parameter of the problem.

Thus, in the complete markets version of the consumption-smoothing model, 𝑐𝑡 = ̄𝑐, ∀𝑡 ≥ 0
is determined by (17) and the consumer’s debt is a fixed function of the state 𝑥𝑡 described by
(16).

Here’s an example that shows how in this setting the availability of insurance against fluctu-
ating nonfinancial income allows the consumer completely to smooth consumption across time
and across states of the world.
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In [8]: function complete_ss(β, b0, x0, A, C, S_y, T = 12)

# Create a linear state space for simulation purposes
# This adds "b" as a state to the linear state space system
# so that setting the seed places shocks in same place for
# both the complete and incomplete markets economy
# Atilde = vcat(hcat(A, zeros(size(A,1), 1)),
# zeros(1, size(A,2) + 1))
# Ctilde = vcat(C, zeros(1, 1))
# S_ytilde = hcat(S_y, zeros(1, 1))

lss = LSS(A, C, S_y, mu_0=x0)

# Add extra state to initial condition
# x0 = hcat(x0, 0)

# Compute the (I - β*A)^{-1}
rm = inv(I - β * A)

# Constant level of consumption
cbar = (1 - β) * (S_y * rm * x0 .- b0)
c_hist = ones(T) * cbar[1]

# Debt
x_hist, y_hist = simulate(lss, T)
b_hist = (S_y * rm * x_hist .- cbar[1] / (1.0 - β))

return c_hist, vec(b_hist), vec(y_hist), x_hist
end

N_simul = 150

# Define parameters
α, ρ1, ρ2 = 10.0, 0.9, 0.0
σ = 1.0
# N_simul = 1
# T = N_simul
A = [1.0 0.0 0.0;

α ρ1 ρ2;
0.0 1.0 0.0]

C = [0.0, σ, 0.0]
S_y = [1.0 1.0 0.0]
β, b0 = 0.95, -10.0
x0 = [1.0, α / (1 - ρ1), α / (1 - ρ1)]

# Do simulation for complete markets
out = complete_ss(β, b0, x0, A, C, S_y, 150)
c_hist_com, b_hist_com, y_hist_com, x_hist_com = out

# Consumption plots
plt_cons = plot(title = "Cons and income", xlabel = "Periods", ylim = [-5.

↪0, 110])
plot!(plt_cons, 1:N_simul, c_hist_com, label = "consumption", lw = 2)
plot!(plt_cons, 1:N_simul, y_hist_com, label = "income",

lw = 2, alpha = 0.6, linestyle = :dash)

# Debt plots
plt_debt = plot(title = "Debt and income", xlabel = "Periods")
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plot!(plt_debt, 1:N_simul, b_hist_com, label = "debt", lw = 2)
plot!(plt_debt, 1:N_simul, y_hist_com, label = "Income",

lw = 2, alpha = 0.6, linestyle = :dash)
hline!(plt_debt, [0], color = :black, linestyle = :dash, lw = 2, label = "")
plot(plt_cons, plt_debt, layout = (1,2), size = (800, 400))
plot!(legend = :bottomleft)

Out[8]:

7.1 Interpretation of Graph

In the above graph, please note that:

• nonfinancial income fluctuates in a stationary manner
• consumption is completely constant
• the consumer’s debt fluctuates in a stationary manner; in fact, in this case because non-

financial income is a first-order autoregressive process, the consumer’s debt is an exact
affine function (meaning linear plus a constant) of the consumer’s nonfinancial income

7.2 Incomplete Markets Version

The incomplete markets version of the model with nonfinancial income being governed by a
linear state space system is described in the first lecture on the permanent income model and
the followup lecture on the permanent income model.

In that version, consumption follows a random walk and the consumer’s debt follows a pro-
cess with a unit root.

We leave it to the reader to apply the usual isomorphism to deduce the corresponding impli-
cations for a tax-smoothing model like Barro’s [1].

7.3 Government Manipulation of Arrow Securities Prices

In optimal taxation in an LQ economy and recursive optimal taxation, we study complete-
markets models in which the government recognizes that it can manipulate Arrow securities
prices.
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In optimal taxation with incomplete markets, we study an incomplete-markets model in
which the government manipulates asset prices.
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